
Artificial Neural Networks (Gerstner). Exercises for week 2

Reinforcement Learning: Q-value and SARSA

Exercise 1. Iterative update

We consider an empirical evaluation of Q(s, a) by averaging the rewards for action a over the first k
trials:

Qk =
1

k

k∑
i=1

ri.

We now include an additional trial and average over all k + 1 trials.

a. Show that this procedure leads to an iterative update rule of the form

∆Qk = η(rk −Qk−1),

(assuming Q0 = 0).

b. What is the value of η?

c. Give an intuitive explanation of the update rule. Hint: Think of the following: If the actual
reward is larger than my estimate, then I should ...

Exercise 2. Greedy policy and the two-armed bandit

In the “2-armed bandit” problem, one has to choose one of 2 actions. Assume action a1 yields a
reward of r = 1 with probability p = 0.25 and 0 otherwise. If you take action a2, you will receive a
reward of r = 0.4 with probability p = 0.75 and 0 otherwise. The “2-armed bandit” game is played
several times and Q values are updated using the update rule ∆Q(s, a) = η[rt −Q(s, a)].

a. Assume that you initialize all Q values at zero. You first try both actions: in trial 1 you choose
a1 and get r = 1; in trial 2 you choose a2 and get r = 0.4. Update your Q values (η = 0.2).

b. In trials 3 to 5, you play greedy and always choose the action which looks best (i.e., has the
highest Q-value). Which action has the higher Q-value after trial 5? (Assume that the actual
reward is r = 0 in trials 3-5.)

c. Calculate the expected reward for both actions. Which one is the best?

d. Initialize both Q-values at 2 (optimistic). Assume that, as in the first part, in the first two trials
you get for both actions the reward. Update your Q values once with η = 0.2. Suppose now that
in the following rounds, in order to explore well, you choose actions a1 and a2 alternatingly and
update the Q-values with a very small learning rate (η = 0.001). How many rounds (one round
= two trials = one trial with each action) does it take on average, until the maximal Q-value
also reflects the best action?
Hint: For η � 1 we can approximate the actual returns rt with their expectations E[r].

Exercise 3. SARSA algorithm

In the lecture, we introduced the SARSA (state-action-reward-state-action) algorithm, which (for
discount factor γ = 1) is defined by the update rule

∆Q(s, a) = η
[
r −

(
Q(s, a)−Q(s′, a′)

)]
, (1)

where s′ and a′ are the state and action subsequent to s and a. In this exercise, we apply a greedy
policy, i.e., at each time step, the action chosen is the one with maximal expected reward, i.e.,

a∗t = arg max
a

Qa(s, a) . (2)



Figure 1: A tree–like environment.
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Figure 2: A linear maze.

If the available actions have the same Q-value, we take both actions with probability 0.5.

Consider a rat navigating in a 1-armed maze (=linear track). The rat is initially placed at the upper
end of the maze (state s), with a food reward at the other end. This can be modeled as a one-
dimensional sequence of states with a unique reward (r = 1) as the goal is reached. For each state, the
possible actions are going up or going down (Fig. 2). When the goal is reached, the trial is over, and
the rat is picked up by the experimentalist and placed back in the initial position s and the exploration
starts again.

a. Suppose we discretize the linear track by 6 states, s1, . . . , s6 where s1 is the initial state and s6 is
the goal state. Initialize all the Q-values at zero. How do the Q-values develop as the rat walks
down the maze in the first trial?

b. Calculate the Q-values after 3 complete trials. How many Q-values are non-zero? How many
trials do we need so that information about the reward has arrived in the state just ‘below’ the
starting state?

c. What happens to the learning speed if the number of states increases from 6 to 12? How many
Q-values are non-zero after 3 trials? How many trial do we need so that information about the
reward has arrived in the state just ‘below’ the starting state?

Exercise 4. Bellman equation

Use the Bellman equation to calculate Q(s, a1) and Q(s, a2) for the scenario shown in Figure 1.
Consider two different policies:

• Total exploration: All actions are chosen with equal probability.

• Greedy exploitation: The agent always chooses the best action.

Note that the rewards/next states are stochastic for the actions a1′, a2′ and a3′. Assume that the
probabilities for the outcome of these actions are all equal, and the discount factor γ is 1.

Exercise 5. 3-step SARSA algorithm



In class we have discussed the SARSA algorithm (for discount factor γ ≤ 1) and shown that, after
convergence, the resulting Q-values solve (in expectation) the Bellman equation for neighboring states.
Your friend claims that a 3-step SARSA for

∆Q(st, at) = η
[
rt + γrt+1 + γ2rt+2 + γ3Q(st+3, at+3)−Q(st, at)

]
, (3)

should work just as well.

To simplify the analysis, we assume that the environment has no loops (i.e., the graph is directed) so
that we can consider γ = 1.

a. Assume that the 3-step SARSA algorithm converges in expectation. Proceed as during the
lecture to show that 〈∆Q(st, at)〉 = 0 implies

Q(st, at) =
∑
s′

patst→s′

[
Rat

st→s′ +
∑
a′

π(s′, a′)B1(s
′, a′)

]

where

B1(s
′, a′) =

∑
s′′

pa
′

s′→s′′

[
Ra′

s′→s′′ +
∑
a′′

π(s′′, a′′)B2(s
′′, a′′)

]

B2(s
′′, a′′) =

∑
s′′′

pa
′′

s′′→s′′′

[
Ra′′

s′′→s′′′ +
∑
a′′′

π(s′′′, a′′′)Q(s′′′, a′′′)

]

b. Show the equivalence of the previous equation to the 1-step Bellman equation.


