
Artificial Neural Networks (Gerstner). Exercises for week 10

Applications of Reinforcement Learning

Exercise 1. Biological learning rules

In this exercise you will show that the softmax output for action selection in combination with a linear read-out
function leads to a biologically plausible learning rule.

Consider a network with three output neurons corresponding to actions a1, a2 and a3 with 1-hot coding. If
ak = 1, action ak is taken.

The probability of taking action ak is given by the softmax function

π(ai|x) =
exp[

∑
k wikyk]∑

j exp[
∑
k wjkyk]

(1)

where yk = f(x− xk).

a. Show that
d

dw35
ln[π(ai|x)] = [a3 − π(a3|x)]y5 . (2)

Hint: simply insert the softmax and then take the derivative.

b. Interpret your result in terms of a ‘presynaptic factor’ and a ‘postsynaptic factor’. Can the rule be
implemented in biology?

Hint: Consider the two cases: action a3 is (or is not) chosen at time t.

Exercise 2. Why target networks help

We look at semi-gradient Q-learning with linear function approximation, i.e. Q(s(j), a) =
∑
i wais

(j)
i . We start

with wai = 0 for all a and i.

Assume we observe state s(1) = (1, 1, 0), take action a = 1, receive reward r = 1 and observe the next state
s(2) = (0, 1, 1).

a. Compute Q(s(1), 1) with the semi-gradient learning rule ∆wai = η(r + γmaxa′ Q(s′, a′)−Q(s, a))si with
η = γ = 1.

b. Show that Q(s(2), 1) has also changed.

c. Assume Q(s, a) =
∑
i waisi + ε, where ε is a Gaussian noise term with mean 0 and variance σ2. Show

that 〈maxaQ(s, a)〉 > maxa〈Q(s, a)〉 > 〈Q(s, arg maxaQ(s, a))〉.

In the following two exercises you will get a better understanding of the basic intuition gained here.

Exercise 3. Q–learning with function approximation
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Consider the MDP shown above, with two states, two actions and deterministic rewards (where T represents
the terminal state). We want to learn the Q–values associated with the states using Q–learning, with discount
factor γ = 1.

a. (Tabular Case) The agent starts with all Q–values equal to 0. As in Dyna–Q, we assume that the agent
can store observed transitions in memory. The agent observes all 4 possible transitions, then updates



the Q–values for s2 by alternating between observations of (s2, a1, r21) and (s2, a2, r22) until learning
converges. The agent then similarly alternates between observations of (s1, a1, r11) and (s1, a2, r12) until
learning converges.

(i) What are the Q–values after convergence in s2, and finally after convergence in s1?

(ii) Do the Q–values after each stage result in the optimal policy?

b. (Function Approximation) Now assume that the states are given to us with the vector–based obser-
vations shown below. We will learn the Q–values using the linear network shown on the right.

As before, assume a Dyna–Q–style learning where the agent learns the weights after observing all transi-
tions. Start with w11 = w12 = w13 = w21 = w22 = w23 = 0.

(i) What will the converged weights be after alternating between the two possible s2 observations? Hint:
Note that certain weights will always be updated in exactly the same way, and should therefore
converge to the same value.

(ii) After s2 convergence, what is the policy in s1? How does this differ from the tabular case after s2
convergence, and why?

(iii) What weights would result in the correct Q–value predictions for all (s, a) pairs? Are they unique?

(iv) How can an arbitrary tabular Q–learning problem be represented using a simple linear neural network
like the one shown on the right? Hint: consider how the input space could be represented such that
semi–gradient descent results in each weight converging exactly to Q(s, a) for some (s, a) pair.
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Exercise 4. The maximization bias and Double–Q learning

Consider the MDP given below, with two non–terminal states A and B and terminal states represented by grey
boxes.

From State A, the action “right” transitions directly to a terminal state with reward 0, while the action “left”
transitions to State B with reward 0. From State B, the agent can take any one of M actions, each of which
has a reward distributed on every step according to N (−0.1, 0.5) (i.e. a Normal distribution with mean −0.1
and variance 0.5). We assume a discount factor γ = 1.

a. What is the true (expected) value of State B? As a result, what are the optimal Q–values Q(A, left) and
Q(A, right), and therefore the optimal policy from State A?

b. Assume M = 20. Write a short function on your computer (5-8 lines) to simulate Q–learning starting
from State B and taking a random policy. Start with all Q–values equal to 0 and α = 0.05, and run it
several times for 5000 trials. Is the resulting value of State B according to V (B) = maxai Q(B, ai) usually
positive or negative? Why? What effect will this have on the learned policy for State A?

c. This effect is referred to as the Maximization Bias, and can be addressed using the Double Q–learning
algorithm below.



Re–write your function above to learn two different sets of Q–values and update one of them at random with
each new observation. Check the value of State B according to both V1(B) = Q1(B, argmaxai(Q2(B, ai))
and V2(B) = Q2(B, argmaxai(Q1(B, ai)). Do these estimates more accurately reflect the true value of
State B?

Exercise 5. From Policy Gradient to eligibility traces

In this exercise you will show that eligibility traces appear naturally in any policy gradient algorithm. Eligibility
traces are nice because they lead to a transparent and easy–to–interpret algorithm. Moreover, eligibility traces
enable a direct online implementation of the algorithm in distributed hardware (or biology).

Consider a discrete multistep reinforcement learning problem with the usual graph, the usual notations and
transitions: an action at leads you (stochastically) from state st to st+1 and on this transition you collect the
reward rt. Suppose that you always start in state st=0 = sstart. We assume that there is a simple terminal
state starget. When you reach this state you get a particularly strong positive reward.

Your policy π(at|st, θ) depends on parameters θ. For the moment your aim is to optimize the parameters of
the policy such that you maximize the expected discounted reward E[Return(sstart → Starget)] = 〈r0 + γr1 +
γ2r2 + ...〉.
We proceed in five steps.

a. Derive a batch version of the policy gradient algorithm over multiple time steps by optimizing E[Return(sstart →
Starget] = 〈r0 + γr1 + γ2r2 + ...〉 through gradient descent.

Hint: Use the log-likelihood trick seen in class. Start as for blackboard 3 (slide 35 of Lecture 10) and take
the derivative with respect to parameter θj .

b. A batch algorithm means averaging over many episodes. Transform the batch algorithm into an online
algorithm where you consider one episode at a time. Assume that in one episode you traverse the state-
action sequence: s0, a0, r0; s1, a1, r1; s2, a2, r2; s3, a3, r3; s4, a4, r4; s5 = starget.

Show that the parameter updates can be written as

∆θj = [r0 + γr1 + γ2r2 + γ3r3 + γ4r4]
d

dθj
ln[π(a0|s0, θ)]

+ [γr1 + γ2r2 + γ3r3 + γ4r4]
d

dθj
ln[π(a1|s1, θ)]

+ [γ2r2 + γ3r3 + γ4r4]
d

dθj
ln[π(a2|s2, θ)]

+ [γ3r3 + γ4r4]
d

dθj
ln[π(a3|s3, θ)]

+ γ4r4]
d

dθj
ln[π(a4|s4, θ)] (3)

Hint: redo the calculation (blackboard 3) on page 35 and compare your result with the result on page 36
(Lecture 10).



c. So far we were only interested in maximizing the discounted future reward from the INITIAL state, with
the discount factor computed relative to that state (t = 0). However, while you move along the trajectory
you pass by other states s1, s2, s3, s4. For each of these states st, you should now also optimize the future
expected discounted reward starting from st; that is you want to maximize E[Return(st → Starget)] =
〈rt + γrt+1 + γ2rt+2 + ...〉.
More generally, you should optimize the future discounted returns from every step t, assuming that the
discounting started at the current step or at any possible step m in the past (i.e. m ≤ t). Assume that m
runs from −∞ to t.

Redo the calculation in (b), but calculate the parameter update resulting from returns starting in arbitrary
states with arbitrary initial discount factors.

Hint: Copy, but time-shift the results from (b).

d. Sum all the updates from (b) and (c) and reorder all terms from (b) and (c) such that updates that are
multiplied with the same reward are grouped together.

Show that this results in updates of the form

∆θj = c rn

{
d

dθj
ln[π(an|sn, θ)] + γ

d

dθj
ln[π(an−1|sn−1, θ)] + γ2

d

dθj
ln[π(an−2|sn−2, θ)] + ... (4)

with some constant c. What is this constant?

e. Now we introduce eligibility traces by defining for each parameter θj a ’shadow variable’ zj which, in each
time step t, decreases by a factor λ < 1

zj ←− λzj (5)

and then (in the same time step) increase by an amount

zj ←−
d

dθj
ln[π(at|st, θ)] (6)

where at is the action taken in time step t.

What is the relation of λ and γ? What is the final weight update?

f. Suppose that all rewards are zero, except the reward in the final time step r4 > 0. Furthermore
suppose that parameter θ is only sensitive to a2, s2. To be specific, say d

dθj
ln[π(a2|s2, θ)] > 0 and

d
dθj
ln[π(at|st, θ)] = 0 for t 6= 2.

How can you interpret the resulting algorithm? How much will the parameter θj change?


