
Artificial Neural Networks (Gerstner). Solutions for week 10

Applications of Reinforcement Learning

Exercise 1. Biological learning rules

In this exercise you will show that the softmax output for action selection in combination with a linear read-out
function leads to a biologically plausible learning rule.

Consider a network with three output neurons corresponding to actions a1, a2 and a3 with 1-hot coding. If
ak = 1, action ak is taken.

The probability of taking action ak is given by the softmax function

π(ai|x) =
exp[

∑
k wikyk]∑

j exp[
∑
k wjkyk]

(1)

where yk = f(x− xk).

a. Show that
d

dw35
ln[π(ai|x)] = [a3 − π(a3|x)]y5 . (2)

Hint: simply insert the softmax and then take the derivative.

b. Interpret your result in terms of a ‘presynaptic factor’ and a ‘postsynaptic factor’. Can the rule be
implemented in biology?

Hint: Consider the two cases: action a3 is (or is not) chosen at time t.

Solution:

a.
lnπ(ai|x) =

∑
k

wikyk − ln
∑
j

exp[
∑
k

wjkyk]. (3)

d

dw35
ln[π(ai|x)] = δi3y5 −

exp[
∑
k wikyk]∑

j exp[
∑
k wjkyk]

y5 = [a3 − π(a3|x)]y5. (4)

b. Note that w35 connects the presynaptic neuron with index 5 in the layer of y-neurons with the action
neuron a3. Hence, the presynaptic facor is y5. The postsynaptic is [a3 − π(a3|x)] Hence, if presynaptic
and postsynaptic neuron are both active, the eligibility trace is increased by an amount [1 − π(a3|x)]y5.
Second, if another action is taken, we have a3 = 0. Hence, the eligibity trace decays by an amount which
is proportional to y5 and π(a3|x). Note that π(a3|x) can be interpreted as the ’drive’ or ’membrane
potential’ of neuron a3. Yes, the rule would be implementable in biology.

Exercise 2. Why target networks help

We look at semi-gradient Q-learning with linear function approximation, i.e. Q(s(j), a) =
∑
i wais

(j)
i . We start

with wai = 0 for all a and i.

Assume we observe state s(1) = (1, 1, 0), take action a = 1, receive reward r = 1 and observe the next state
s(2) = (0, 1, 1).

a. Compute Q(s(1), 1) with the semi-gradient learning rule ∆wai = η(r + γmaxa′ Q(s′, a′)−Q(s, a))si with
η = γ = 1.

b. Show that Q(s(2), 1) has also changed.

c. Assume Q(s, a) =
∑
i waisi + ε, where ε is a Gaussian noise term with mean 0 and variance σ2. Show

that 〈maxaQ(s, a)〉 > maxa〈Q(s, a)〉 > 〈Q(s, arg maxaQ(s, a))〉.

In the following two exercises you will get a better understanding of the basic intuition gained here.

Solution:



a. ∆w11 = 1 · (1 + 1 maxa′ 0 − 0) · 1 = 1, similarly ∆w12 = 1, ∆w13 = 1 · (1 + 1 maxa′ 0 − 0) · 0 = 0. With

these updates we get Q(1), 1) =
∑
i w1is

(1)
i = 2

b. Q(s(2), 1) was 0 before the update and is now Q(s(2), 1) =
∑
i w1is

(2)
i = 1.

c. Lets call the maximal expected Q-value Q(s, a∗) = maxa〈Q(s, a)〉. If the noise terms where always such
that arg maxaQ(s, a) = a∗, 〈maxaQ(s, a)〉 would be equal to Q(s, a∗) = maxa〈Q(s, a)〉, but for all cases
where arg maxQ(s, a) = â 6= a∗ we have Q(s, â) > Q(s, a∗) and thus 〈maxaQ(s, a)〉 > maxa〈Q(s, a)〉 and
〈Q(s, â)〉 < Q(s, a∗) and thus maxa〈Q(s, a)〉 > 〈Q(s, arg maxaQ(s, a))〉.

Exercise 3. Q–learning with function approximation

s1 s2 T

T

a1, r11 = 0 a1, r21 = 1

a
2 , r

22 =
2

a
2 , r12 = 1

Consider the MDP shown above, with two states, two actions and deterministic rewards (where T represents
the terminal state). We want to learn the Q–values associated with the states using Q–learning, with discount
factor γ = 1.

a. (Tabular Case) The agent starts with all Q–values equal to 0. As in Dyna–Q, we assume that the agent
can store observed transitions in memory. The agent observes all 4 possible transitions, then updates
the Q–values for s2 by alternating between observations of (s2, a1, r21) and (s2, a2, r22) until learning
converges. The agent then similarly alternates between observations of (s1, a1, r11) and (s1, a2, r12) until
learning converges.

(i) What are the Q–values after convergence in s2, and finally after convergence in s1?

(ii) Do the Q–values after each stage result in the optimal policy?

b. (Function Approximation) Now assume that the states are given to us with the vector–based obser-
vations shown below. We will learn the Q–values using the linear network shown on the right.

As before, assume a Dyna–Q–style learning where the agent learns the weights after observing all transi-
tions. Start with w11 = w12 = w13 = w21 = w22 = w23 = 0.

(i) What will the converged weights be after alternating between the two possible s2 observations? Hint:
Note that certain weights will always be updated in exactly the same way, and should therefore
converge to the same value.

(ii) After s2 convergence, what is the policy in s1? How does this differ from the tabular case after s2
convergence, and why?

(iii) What weights would result in the correct Q–value predictions for all (s, a) pairs? Are they unique?

(iv) How can an arbitrary tabular Q–learning problem be represented using a simple linear neural network
like the one shown on the right? Hint: consider how the input space could be represented such that
semi–gradient descent results in each weight converging exactly to Q(s, a) for some (s, a) pair.

s1 =

x1x2
x3

 =

1
1
0


s2 =

x1x2
x3

 =

0
1
1



x1

x2

x3

Q(s, a1)

Q(s, a2)

w11

w12

w13

w
21

w22

w23



Solution:

a. (i) [
Q(s1, a1) Q(s1, a2)
Q(s2, a1) Q(s2, a2)

]
=

[
0 0
0 0

]
(Start)[

0 0
1 2

]
(After s2 convergence)[

2 1
1 2

]
(After s1 convergence)

(ii) With a discount factor of 1, the optimal policy is to take a1 in s1 and a2 in s2, achieving a reward
of 2. After s2 convergence, the Q–values in s1 are equal, so they do not represent an optimal policy.
The final Q–values do represent the optimal policy.

b. (i) Noting that the updates should result in w12 = w13 and w22 = w23, we can expect the weights to
converge to

[
w11 w12 w13

w21 w22 w23

]
=

[
0 0 0
0 0 0

]
(Start)[

0 0.5 0.5
0 1 1

]
(After s2 convergence)

(ii) Unlike the tabular case, the Q–values for s1 are now Q(s1, a1) = 0.5 and Q(s1, a2) = 1, resulting in a
policy that does not give equivalent weight to the two actions (and in this case is suboptimal). This
occurs because x2 = 1 for both states, so their updates are correlated.

(iii) One possible solution is to fix w12 = w22 = 0. In this case, the value of x2 is irrelevant and the state
representations become effectively orthogonal. The optimal weights are given by

[
w11 w12 w13

w21 w22 w23

]
=

[
2 0 1
1 0 2

]
which we can see as equivalent to the tabular solution given above.

In general, we can notice that the weights for Q(s, a2) can be solved without using the values of any
other states, and amount to solving a system of 2 equations with 3 unknowns. Since this solution
will not be unique, the optimal weights are not unique either.

(iv) The semi–gradient descent rule for the network above gives the weight update

∆wji = α
(
rt+1 + γmax

ai
Q(st+1, ai)−Q(st, at)

)∂Q(st, at)

∂wji

applied only for the observed action at = j. Note that this is equivalent to tabular Q–learning with
wji = Q(i, j) if

∂Q(st, at)

∂wji
=

{
1, if st = i and at = j

0, otherwise.

Since ∂Q(st,at)
∂wji

= xi, this can be enforced by using a one–hot input representation with N inputs for

N states.

Exercise 4. The maximization bias and Double–Q learning

Consider the MDP given below, with two non–terminal states A and B and terminal states represented by grey
boxes.



From State A, the action “right” transitions directly to a terminal state with reward 0, while the action “left”
transitions to State B with reward 0. From State B, the agent can take any one of M actions, each of which
has a reward distributed on every step according to N (−0.1, 0.5) (i.e. a Normal distribution with mean −0.1
and variance 0.5). We assume a discount factor γ = 1.

a. What is the true (expected) value of State B? As a result, what are the optimal Q–values Q(A, left) and
Q(A, right), and therefore the optimal policy from State A?

b. Assume M = 20. Write a short function on your computer (5-8 lines) to simulate Q–learning starting
from State B and taking a random policy. Start with all Q–values equal to 0 and α = 0.05, and run it
several times for 5000 trials. Is the resulting value of State B according to V (B) = maxai Q(B, ai) usually
positive or negative? Why? What effect will this have on the learned policy for State A?

c. This effect is referred to as the Maximization Bias, and can be addressed using the Double Q–learning
algorithm below.

Re–write your function above to learn two different sets of Q–values and update one of them at random with
each new observation. Check the value of State B according to both V1(B) = Q1(B, argmaxai(Q2(B, ai))
and V2(B) = Q2(B, argmaxai(Q1(B, ai)). Do these estimates more accurately reflect the true value of
State B?

Solution:

a. Since all actions from State B give the same reward distribution, the policy is irrelevant to the value of
the state. The true expected value is therefore simply the mean, −0.1. As a result, Q(A, left) = −0.1.
Since Q(A, right) = 0, the opimal policy is to take the right action.

b. A possible function (in Python) is

import numpy as np
def s imulate ( num steps ) :

num actions = 20
qs = np . z e r o s ( num actions )
for i in range ( num steps ) :

a = np . random . cho i c e ( num actions )
qs [ a ] += 0 .05∗ ( np . random . normal ( −0 .1 ,0 .5 ) − qs [ a ] )

return qs
print (np .max( s imulate ( 50 00 ) ) )



The result is usually positive, despite the negative bias of the Normal distribution. As a result, Q(A, left)
will also usually be positive and the agent will favour the “left” action, although we know from above that
“right” is optimal.

To understand why, we note that the mean 1
M

∑
ai
Q(B, ai) is usually close to −0.1, where each Q(B, ai)

is computed from a subsample of N (−0.1, 0.5). However, we take maxai Q(B, ai) to determine the state
value. The maximum subsample mean will usually be higher than the true mean, and it is probable that
at least one subsample will result in a positive Q–value. This Maximization Bias becomes problematic
when the task stochasticity (i.e. Q–value variance) dominates over the difference in expected values of
different actions (which in this case is 0).

c. The new function using Double Q–learning should look like

import numpy as np
def s imulate2 ( num steps ) :

num actions = 20
qs1 = np . z e r o s ( num actions )
qs2 = np . z e r o s ( num actions )
for i in range ( num steps ) :

a = np . random . cho i c e ( num actions )
i f np . random . random ( ) < 0 . 5 :

qs1 [ a ] += 0 .05∗ ( np . random . normal ( −0 .1 ,0 .5 ) − qs1 [ a ] )
else :

qs2 [ a ] += 0 .05∗ ( np . random . normal ( −0 .1 ,0 .5 ) − qs2 [ a ] )
return qs1 , qs2

qs1 , qs2 = s imulate2 (5000)
print ( qs1 [ np . argmax ( qs2 ) ] , qs2 [ np . argmax ( qs1 ) ] )

and the resulting values should be close to −0.1.

Exercise 5. From Policy Gradient to eligibility traces

In this exercise you will show that eligibility traces appear naturally in any policy gradient algorithm. Eligibility
traces are nice because they lead to a transparent and easy–to–interpret algorithm. Moreover, eligibility traces
enable a direct online implementation of the algorithm in distributed hardware (or biology).

Consider a discrete multistep reinforcement learning problem with the usual graph, the usual notations and
transitions: an action at leads you (stochastically) from state st to st+1 and on this transition you collect the
reward rt. Suppose that you always start in state st=0 = sstart. We assume that there is a simple terminal
state starget. When you reach this state you get a particularly strong positive reward.

Your policy π(at|st, θ) depends on parameters θ. For the moment your aim is to optimize the parameters of
the policy such that you maximize the expected discounted reward E[Return(sstart → Starget)] = 〈r0 + γr1 +
γ2r2 + ...〉.
We proceed in five steps.

a. Derive a batch version of the policy gradient algorithm over multiple time steps by optimizing E[Return(sstart →
Starget] = 〈r0 + γr1 + γ2r2 + ...〉 through gradient descent.

Hint: Use the log-likelihood trick seen in class. Start as for blackboard 3 (slide 35 of Lecture 10) and take
the derivative with respect to parameter θj .

b. A batch algorithm means averaging over many episodes. Transform the batch algorithm into an online
algorithm where you consider one episode at a time. Assume that in one episode you traverse the state-
action sequence: s0, a0, r0; s1, a1, r1; s2, a2, r2; s3, a3, r3; s4, a4, r4; s5 = starget.

Show that the parameter updates can be written as



∆θj = [r0 + γr1 + γ2r2 + γ3r3 + γ4r4]
d

dθj
ln[π(a0|s0, θ)]

+ [γr1 + γ2r2 + γ3r3 + γ4r4]
d

dθj
ln[π(a1|s1, θ)]

+ [γ2r2 + γ3r3 + γ4r4]
d

dθj
ln[π(a2|s2, θ)]

+ [γ3r3 + γ4r4]
d

dθj
ln[π(a3|s3, θ)]

+ γ4r4]
d

dθj
ln[π(a4|s4, θ)] (5)

Hint: redo the calculation (blackboard 3) on page 35 and compare your result with the result on page 36
(Lecture 10).

c. So far we were only interested in maximizing the discounted future reward from the INITIAL state, with
the discount factor computed relative to that state (t = 0). However, while you move along the trajectory
you pass by other states s1, s2, s3, s4. For each of these states st, you should now also optimize the future
expected discounted reward starting from st; that is you want to maximize E[Return(st → Starget)] =
〈rt + γrt+1 + γ2rt+2 + ...〉.
More generally, you should optimize the future discounted returns from every step t, assuming that the
discounting started at the current step or at any possible step m in the past (i.e. m ≤ t). Assume that m
runs from −∞ to t.

Redo the calculation in (b), but calculate the parameter update resulting from returns starting in arbitrary
states with arbitrary initial discount factors.

Hint: Copy, but time-shift the results from (b).

d. Sum all the updates from (b) and (c) and reorder all terms from (b) and (c) such that updates that are
multiplied with the same reward are grouped together.

Show that this results in updates of the form

∆θj = c rn

{
d

dθj
ln[π(an|sn, θ)] + γ

d

dθj
ln[π(an−1|sn−1, θ)] + γ2

d

dθj
ln[π(an−2|sn−2, θ)] + ... (6)

with some constant c. What is this constant?

e. Now we introduce eligibility traces by defining for each parameter θj a ’shadow variable’ zj which, in each
time step t, decreases by a factor λ < 1

zj ←− λzj (7)

and then (in the same time step) increase by an amount

zj ←−
d

dθj
ln[π(at|st, θ)] (8)

where at is the action taken in time step t.

What is the relation of λ and γ? What is the final weight update?

f. Suppose that all rewards are zero, except the reward in the final time step r4 > 0. Furthermore
suppose that parameter θ is only sensitive to a2, s2. To be specific, say d

dθj
ln[π(a2|s2, θ)] > 0 and

d
dθj
ln[π(at|st, θ)] = 0 for t 6= 2.

How can you interpret the resulting algorithm? How much will the parameter θj change?

Solution:

a. We will take Gs0,a0 = r0 +γr1 +γ2r2 + . . . as a Monte Carlo sample of the total discounted future returns
from taking action a0 in state s0. Our goal is to maximize Eπ[< Gs0,a0 >], where < Gs0,a0 > is the
expected discounted future returns starting from (s0, a0).

We will start by only optimizing over our policy in the first state, π(a0|s0, θ). We then have



Eπ(a0|s0)[< Gs0,a0 >] =

∫
a0

< Gs0,a0 > π(a0|s0)da0.

Taking the derivative and moving it inside the integral gives us

∂Eπ(a0|s0)[< Gs0,a0 >]

∂θj
=

∫
a0

< Gs0,a0 >
∂

∂θj
π(a0|s0, θ)da0

The log–likelihood trick tells us that

d

dx
p(x) =

p(x)

p(x)

d

dx
p(x) = p(x)

d

dx
ln p(x).

Applying this above gives

∂Eπ(a0|s0)[Gs0,a0 ]

∂θj
=

∫
a0

< Gs0,a0 > π(a0|s0, θ)
∂

∂θj
lnπ(a0|s0, θ)da0

Unfortunately, we don’t have direct access to the expected discounted returns < Gs0,a0 > under every
action a0. However, we can approximate it from the batch returns under each action, just as we can
approximate π(a0|s0, θ) from the proportion of times the agent took action a0 in state s0 under the policy.

Assume that, over M episodes, a particular state–action pair (s0, a0) was experienced Ns0,a0 times. Then,

< Gs0,a0 > π(a0|s0, θ) ≈
∑Ns0,a0

k=1 Gks0,a0
Ns0,a0

Ns0,a0
M

=

∑Ns0,a0

k=1 Gks0,a0
M

where Gks0,a0 represent the returns on a particular episode k. Replacing the integral with a sum over all
the batch episodes, we can then approximate the gardient as

∆θ0j =
1

M

M∑
i=1

Gis0,a0
∂

∂θj
lnπ(a0|s0, θ)

where ∆θ0j represents the contribution to the gradient from π(a0|s0, θ).
Finally, the full return < Gs0,a0 > depends on all the other actions taken in the episode as well. However,
an action at only affects the components of Gis0,a0 that came after time step t, which is equal to γtGist,at .
Therefore,

∆θtj =
1

M

M∑
i=1

γtGist,at
∂

∂θj
lnπ(at|st, θ)

Adding them together gives

∆θj =
1

M

M∑
i=1

Ti∑
t=0

γtGist,at
∂

∂θj
lnπ(at|st, θ)

b. Transforming the batch algorithm into an online algorithm can be done by simply removing the averaging
over M , i.e.

∆θj =

T∑
t=0

γtGst,at
∂

∂θj
lnπ(at|st, θ)

For the given episode, we have

∆θj = γ0Gs0,a0
∂

∂θj
lnπ(a0|s0, θ) + γ1Gs1,a1

∂

∂θj
lnπ(a1|s1, θ)

+ γ2Gs2,a2
∂

∂θj
lnπ(a2|s2, θ) + γ3Gs3,a3

∂

∂θj
lnπ(a3|s3, θ) + γ4Gs4,a4

∂

∂θj
lnπ(a4|s4, θ).

Evaluating Gst,at = rt + γrt+1 + γ2rt+2 . . . gives the result above.



c. Optimizing for the returns starting from an arbitrary step m on the trajectory gives us

∆θj =

T∑
t=0

t∑
m=−∞

γt−mGst,at
∂

∂θj
lnπ(at|st, θ)

where we recover the original gradient when m runs from 0 to 0. Performing a change of variables with
b = t−m yields

∆θj =

T∑
t=0

∞∑
b=0

γbGst,at
∂

∂θj
lnπ(at|st, θ)

and recognizing the infinite geometric series gives us

∆θj =
1

1− γ

T∑
t=0

Gst,at
∂

∂θj
lnπ(at|st, θ).

d. Substituting for the returns in the above yields

∆θj =
1

1− γ

T∑
t=0

[
T−t∑
i=0

γirt+i

]
∂

∂θj
lnπ(at|st, θ)

Performing another change of variables with n = t+ k and eliminating t gives

∆θj =
1

1− γ

T∑
n=0

n∑
i=0

γkrn
∂

∂θj
lnπ(an−i|sn−i, θ)

= c

T∑
n=0

rn

n∑
i=0

γi
∂

∂θj
lnπ(an−i|sn−i, θ) (9)

which is equivalent to the expression above, with c = 1
1−γ .

e.

ztj = λzt−1j +
∂

∂θj
lnπ(at|st, θ)

= λ(λzt−2j +
∂

∂θj
lnπ(at−1|st−1, θ)) +

∂

∂θj
lnπ(at|st, θ)

= λ2zt−2j + λ
∂

∂θj
lnπ(at−1|st−1, θ) +

∂

∂θj
lnπ(at|st, θ)

=

t∑
i=0

λi
∂

∂θj
lnπ(at−i|st−i, θ),

where in the last line we have assumed that z0j = 0 (i.e. the shadow variables were all initialized to 0).
With γ = λ, we note that this is equivalent to the last sum in Equation 9. In this case, we can express
the policy gradient update using our shadow variables as

∆θj = c

T∑
n=0

rnz
n
j (10)



f. In this case, Equation 10 simplifies to

∆θj = cr4z
4
j

= cr4

4∑
i=0

λi
∂

∂θj
lnπ(a4−i|s4−i, θ)

= cλ2r4
∂

∂θj
lnπ(a2|s2, θ)

Since lnπ(a2|s2, θ) > 0, an increase in the value of the parameter θj will increase the probability of taking
a2 in s2 again. In addition, since r4 > 0, all terms are positive and the value of θ4 will increase.

The magnitude of increase depends on the magnitude of r4. In other words, θj will increase more if it
contributed to a larger reward, due to its effect on the policy 2 steps before receiving the reward.

The magnitude of increase also depends on λ2. If the discount factor λ is small, it suggests that earlier
actions contribute little to later rewards; as a result, the gradient will also be small since it relates to the
policy several steps before actually receiving the reward.


