

School of Computer and Communication Sciences Audiovisual Communications Laboratory (LCAV)

MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING FALL SEMESTER 2020

Lecturers	Dr. Matthieu Simeoni Dr. Benjamín Béjar Haro	matthieu.simeoni benjamin.bejarharo
Teaching Assistant	Mrs. Michalina Pacholska	michalina.pacholska
Office Hours	Monday from 10:00 to 11:00	Office BC 324
Lectures Exercises	Mondays from 14:00 to 17:00 Fridays from 15:00 to 17:00	Room INM 203 Room INM 203
Evaluation	30% Mini Project $70%$ Final Exam (Written)	

$Development \ of \ the \ class$

Lectures and exercise sessions will be done on-site and live-streamed for off-campus students. We will use Zoom for live-streaming so students are encouraged to download the Zoom app. The link for live-streaming will be communicated through the official class channels (moodle or e-mail).

Course Material

All related course material (slides, assignments, etc) will be posted on the class moodle: COM-514. Q&A and a forum for discussion will hosted in Piazza COM-514.

Textbook

Martin Vetterli, Jelena Kovačević and Vivek Goyal, *"Foundations of Signal Processing"*, Cambridge University Press, 2014. ISBN 9781107038608. Open access at http://www.fourierandwavelets.org

Course Overview

The goal of this class is to present signal processing tools from an intuitive geometric point of view which is at the heart of all modern signal processing techniques from Fourier transforms and sampling theorems to time-frequency analysis and wavelets. The course is designed to provide the mathematical depth and rigor needed for the study of advanced topics in signal processing and also features introductions to current applications where such tools are crucial. In particular, several applications from medical and computational imaging will be studied.

Learning Outcomes

- Master the right tools to tackle advanced signal and data processing problems
- Have an intuitive understanding of signal processing through a geometrical approach
- Get to know the applications that are of interest today
- Learn about topics that are at the forefront of signal processing research

MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING FALL SEMESTER 2020

Week	Lectures [M. Simeoni B. Béjar]	Exercises [M. Pacholska]
Week 1 14 Sep – 20 Sep	[B. Béjar] Mon 14/09 INM203 Introduction Signals, Linear Systems and Fourier	Fri 18/09 INM203 Homework 1
Week 2 21 Sep – 27 Sep	No Lecture (Jeûne Fédéral)	Fri 25/09 INM203 Homework 2
Week 3	[M. Simeoni] Mon 28/09 INM203	Fri 02/10 INM203
28 Sep – 04 Oct	Linear Algebra Fundamentals for Representation Theory I	Homework 3
Week 4 05 Oct – 11 Oct	[M. Simeoni] Mon $05/10$ INM203 Linear Algebra Fundamentals for Representation Theory II	Fri 09/10 INM203 Homework 4
Week 5	[B. Béjar] Mon 12/10 INM203	Fri 16/10 INM203
12 Oct – 18 Oct	Sampling and Interpolation I	Homework 5
Week 6 19 Oct – 25 Oct	[B. Béjar] Mon 19/10 INM203 Sampling and Interpolation II	Fri 23/10 INM203 Mini Project $(1/2)$ Due on $08/11$
Week 7	[B. Béjar] Mon 26/10 INM203	Fri 30/10 INM203
26 Oct – 01 Nov	Polynomial and Spline Approximation I	Homework 6
Week 8	[B. Béjar] Mon 02/11 INM203	Fri 06/11 INM203
02 Nov – 08 Nov	Polynomial and Spline Approximation I	Homework 7
Week 9	[M. Simeoni] Mon 09/11 INM203	Fri 13/11 INM203
09 Nov – 15 Nov	Regularized Inverse Problems I	Homework 8
Week 10 16 Nov – 22 Nov	[M. Simeoni] Mon 16/11 INM203 Regularized Inverse Problems II	Fri 20/11 INM203 Mini Project $(2/2)$ Due on $04/12$
Week 11	[M. Simeoni] Mon 23/11 INM203	Fri 27/11 INM203
23 Nov – 29 Nov	Computerized Tomography	Homework 9
Week 12	[M. Simeoni] Mon 21/09 INM203	Fri 04/12 INM203
30 Nov – 06 Dec	Finite Rate of Innovation I	Homework 10
Week 13 07 Dec – 13 Dec	[M. Simeoni – B. Béjar] Mon 14/10 INM203 Finite Rate of Innovation II Adaptive Filtering I	Fri 11/12 INM203 Homework 11
Week 14	[B. Béjar]	Fri 18/12 INM203
14 Dec – 20 Dec	Adaptive Filtering II	Homework 12