

MGT581: Introduction to Econometrics

4 credits

Spring 2021

Prof. Gaétan de Rassenfosse

ODY 201 A gaetan.derassenfosse@epfl.ch http://iipp.epfl.ch/ | http://www.gder.info

Teaching Assistant

Matthias van den Heuvel matthias.vandenheuvel@epfl.ch

(This version: Apr 6, 2021)

<u>Course website/moodle:</u> This course uses Moodle.

<u>Office hours</u>: Friday from 3pm to 5pm via Zoom. Please seek email confirmation from the TA before meeting.

 École polytechnique fédérale de Lausanne Phone. : E-mail : Website :

COURSE OVERVIEW

This course provides and introduction to the key principles in econometrics. It covers the following topics: linear and non-linear estimators; difference between correlation and causality; techniques to establish causal effects; and interpretation of effect size.

DIDACTIC APPROACH AND CLASS ATTENDANCE

The course involves three main learning channels: theory sessions, practical sessions, and problem sets. The Monday lecture will provide elements of theory, while the Friday sessions will provide hands-on experience with the *R* statistical software. Exercise sessions will follow closely material covered in class. Students will receive regular problem sets to submit to the T.A. Deadline for submission is 4 pm on the Thursday.

LEARNING OUTCOMES

By the end of the course, the student must be able to:

- Recognize pitfalls and bias in data collection and econometric models
- Illustrate the concept of endogeneity
- Check the validity of an econometric result
- Quantify an economic relationship
- Design an appropriate regression model
- Interpret coefficients of econometric regressions

MATERIALS

Slides will be uploaded on Moodle one week before the lecture.

The reference textbook is not compulsory:

James H. Stock and Mark W. Watson, Introduction to Econometrics, Third Edition (Updated Edition), Pearson. ISBN: 978-0-13348687-2 (<u>http://www.isbnsearch.org/isbn/9780133486872</u>)

FORM OF EXAMINATION & GRADING

- Individual project accounting for 60 per cent of the final grade.
- Individual problem sets accounting for 40 per cent of the final grade.

COURSE SCHEDULE: A QUICK OVERVIEW OF THE SESSIONS

Zoom link for Mondays: <u>https://epfl.zoom.us/j/83031894326</u> Zoom link for Fridays: <u>https://epfl.zoom.us/j/89621457683</u>

Session	Date	Topics
1.	February 22	Introduction and review of key principles
	February 26	No exercise session
2.	March 1	Guest Speaker (François Chareyron, Lombard Odier)
		Linear regression with one regressor
	March 5	Exercise session 1
3.	March 8	Hypothesis tests and confidence intervals
	March 12	No exercise session
4.	March 15	Linear regression with multiple regressor
	March 19	Exercise session 2
5.	March 22	Hypothesis tests and confidence intervals
	March 26	Exercise session 3
6.	March 29	Nonlinear regression functions
	April 2	Good Friday
	April 5	Easter Monday
	April 9	Easter Holidays
7.	April 12	Assessing studies based on multiple regression
	April 16	Exercise session 4
8.	April 19	Regression with panel data
	April 23	Exercise session 5
9.	April 26	Regression with a binary dependent variable
	April 30	Exercise session 6
10.	May 3	Instrumental variables regression
	May 7	Exercise session 7
11.	May 10	Instrumental variables regression (continued)
	May 14	Exercise session 8
12.	May 17	Experiments and quasi-experiments
	May 21	No exercise session
13.	May 24	Whit Monday
	May 28	Exercise session 9
14.	May 31	Q&A session about the final exam
	June 4	No exercise session

Important dates for problem sets:

- Problem Set #1: available on March 12, submission on March 25
- Problem Set #2: available on April 23, submission on May 6
- Problem Set #3: available on May 21, submission on June 3

 École polytechnique fédérale de Lausanne

EPFL CDM-SMTE Odyssea Building Station N° 5 CH - 1015 Lausanne Phone : E-mail : Website : +4121 693 01 22 smte@epfl.ch www.smte.epfl.ch