Consistency of S -> S S

JC Chappelier

20000629

Consider the SCFG $\mathcal{G}=(\{a\},\{S\}, S,\{S \longrightarrow S S \quad(p), S \longrightarrow a \quad(1-p)\})$, with $0<$ $p<1$.
How much is $P(\mathcal{L}(\mathcal{G}))$?
$\mathcal{L}(\mathcal{G})=\left\{a^{n}: n \geq 1\right\}$, thus $P(\mathcal{L}(\mathcal{G}))=\sum_{n=1}^{\infty} P\left(a^{n}\right)$.
Each derviation of the sentence a^{n} has a probability $p^{n-1}(1-p)^{n}: n$ as have been produced, thus the rule $S \longrightarrow a$ has been used n times, and from the initial S, the rule $S \longrightarrow S S$ had to be applied $n-1$ times (to produce the n final $S \mathrm{~s}$, since each single application of that rule adds only and only one more S).
Thus $P\left(a^{n}\right)=\nu_{n} p^{n-1}(1-p)^{n}$, where ν_{n} is the number of derivations of the sentence a^{n}. We proove in appendix A that

$$
\nu_{n}=\frac{1}{n}\binom{2 n-2}{n-1}=C_{n-1}
$$

where C_{n} is know as the n-th "Catalan number".
Thus:

$$
\begin{aligned}
P(\mathcal{L}(\mathcal{G})) & =\sum_{n=1}^{\infty} C_{n-1} p^{n-1}(1-p)^{n} \\
& =(1-p) \sum_{n=0}^{\infty} C_{n} p^{n}(1-p)^{n} \\
& =(1-p) \mathrm{f}(p(1-p))
\end{aligned}
$$

where f is the generating function of the Catalan numbres, i.e. $\mathrm{f}(z)=\sum_{n=0}^{\infty} C_{n} z^{n}$. We proove in appendix B that for all $0 \leq z \leq \frac{1}{4}, \mathrm{f}(z)=\frac{1-\sqrt{1-4 z}}{2 z}$.
Thus (see appendix C) :

$$
\mathrm{f}(p(1-p))= \begin{cases}\frac{1}{p} & \text { for } \frac{1}{2} \leq p<1 \\ \frac{1}{1-p} & \text { for } 0<p \leq \frac{1}{2}\end{cases}
$$

And finally:

$$
P(\mathcal{L}(\mathcal{G})))= \begin{cases}\frac{1-p}{p} & \text { for } \frac{1}{2} \leq p<1 \\ 1 & \text { for } 0<p \leq \frac{1}{2}\end{cases}
$$

i.e.:

$$
P(\mathcal{L}(\mathcal{G}))=\min \left(1, \frac{1-p}{p}\right)
$$

A Catalan numbers

Let's compute ν_{n} is the number of derivations of the sentence a^{n}.
Looking at all decomposition into two subsequences of string a^{n}, we derive that

$$
\nu_{n}=\sum_{k=1}^{n-1} \nu_{k} \cdot \nu_{n-k}
$$

(and $\nu_{1}=1$).
Knowing that Catalan numbers follow the following recurrence relation:

$$
\left\{\begin{array}{l}
C_{0}=1 \\
C_{n+1}=\sum_{k=0}^{n} C_{k} \cdot C_{n-k}
\end{array}\right.
$$

it's trivial to see that indeed $\nu_{n}=C_{n-1}$.
There are many proofs which you can easily find on the Web that $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

B Generating fonction for Catalan numbers

Knowing that:

$$
\sum_{n=0}^{\infty}\binom{2 n}{n} z^{n}=\frac{1}{\sqrt{1-4 z}}
$$

the convergence radius of which is $\frac{1}{4}$, we get (integrating):

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} z^{n+1} & =\int_{0}^{z} \frac{\mathrm{~d} u}{\sqrt{1-4 u}} \\
& =-\frac{1}{2}(\sqrt{1-4 z}-1)
\end{aligned}
$$

thus

$$
z \cdot \sum_{n=0}^{\infty} C_{n} z^{n}=\frac{1-\sqrt{1-4 z}}{2}
$$

And finaly

$$
\sum_{n=0}^{\infty} C_{n} z^{n}=\frac{1-\sqrt{1-4 z}}{2 z}
$$

for all $0<|z|<\frac{1}{4}$. This definition can also be extended to $z=0$ and $|z|=\frac{1}{4}$ by continuity (continuous extension).

C Computation of $f(p(1-p))$

For $0<p<1$ (thus $p(1-p) \leq \frac{1}{4}$):

$$
\begin{aligned}
f(p(1-p)) & =\frac{1-\sqrt{1-4 p(1-p)}}{2 p(1-p)} \\
& =\frac{1-\sqrt{\left.1-4 p+4 p^{2}\right)}}{2 p(1-p)} \\
& =\frac{1-\sqrt{(2 p-1)^{2}}}{2 p(1-p)} \\
& =\frac{1-|2 p-1|}{2 p(1-p)} \\
& =\left\{\begin{array}{ll}
\frac{2 p-2}{2 p(1-p)} & \text { for } \frac{1}{2} \leq p<1 \\
\frac{2 p(1-p)}{2 p(1)} & \text { for } 0<p \leq \frac{1}{2}
\end{array} \quad= \begin{cases}\frac{1}{p} & \text { for } \frac{1}{2} \leq p<1 \\
\frac{1}{1-p} & \text { for } 0<p \leq \frac{1}{2}\end{cases} \right.
\end{aligned}
$$

