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11.1 Review from week 10

Spontaneous activity in vivo ~ Variability
- of membrane potential?

- of spike timing?

awake mouse, cortex, freely whisking,
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11.1 Review from week 10

In vivo data
- looks ‘noisy’

INn vitro data
- fluctuations

Fluctuations
-of membrane potential
-of spike times

fluctuations=noise?

relevance for coding?

source of fluctuations?

model of fluctuations?



11.1. Review from week 10

- Intrinsic noise (lon channels)

-Finite number of channels
-Finite temperature

-Spike arrival from other neurons
=) -Beyond control of experimentalist




11.1. Review from week 10

- Intrinsic noise (lon channels)

In vivo data
- looks ‘noisy’

In vitro data
—>small fluctuations o \‘o‘\\
. . . - :“a ‘ \
—nearly deterministic e L D 00““\\0\)




11.1 Review from week 10: Calculating the mean
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11.1. Fluctuation of potential

for a passive membrane, predict O
-mean = |
-variance )

of membrane potential fluctuations
Passive membrane

T —U=—(U=Upg) +RIP (1)

dt
Passive membrane
=Leaky Integrate-and-fire

without threshold



11.1. Fluctuation of current/potential
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11.1 Calculating autocorrelations

1(t) =1, (t) + S(t)
I(t)
Autocorrelation Io(t)MW O

(X(t)x(t) =

Fluctuating input current

X(t) = jdt'f(t—t')l(t)'
X(t) = jdsf(s)l(t—s)

box() = e [afe-vfE-oypanay) MO [ds f(s)(1(t-9))

Use - I(t") = I,(t') +&(t) _
) <§(t')§(t")>\J (X(1)) = jdsf(s) l,(t=s)




11.1. Fluctuation of potential

for a passive membrane, predict -

»
& O
-mean = |
-variance §

of membrane potential fluctuations
A2 Passive membrane
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White noise: Exercise 1.1-1.2 now

““““““““““““““““ 9 Assumption:
far away from theshold

Input starts here Next lecture:
Expected voltage at timet  (u(t))="? 10:15

Variance of voltage at time t

(Au()Au(t)) = (u(t)u(t)) —{u(t))’ =
Report variance as function of time!




11.1 Calculating autocorrelations for stochastic spike arrival

First approach: white noise (to mimic stochastic spike arrival) '

Math argument

variance
(Aut)Au(t)) = (u(t)u(t)) —(u(t))" =
(Au(t)Au(t)) = (u(t)u(t’))—(u(t))(u(t))

Autocorrelation of
membrane potential

d

AU(t) ________________ r au = —(U _urest) +R1 (t) + ¢ (t)
M e T e

.| Neuronal Dynamics

0 5 10 15 20 25

([AU) ) = o [1—exp(-2t/ 7)]

o 1 e { [t — ()]
Iater p(u,t) V2m (Au2(1)) p{ 2 (Au?(t)) }




11.1 Conclusion: Mean and autocorrelation of the membrane potential

S(t) 1 1 | | u(t) ﬁ%ﬂm

First approach to calculate autocorrelations.

A spike train S(t) causes a fluctuating current I(t).
We separate the fluctuating current into a mean current <I(t)> and a noise component &(t) .

By definition the mean of the noise vanishes: < g(t) >=0 at any moment in time.

If the time constant of the synapse Is extremely short, we can formulate the noise

component as white noise. White noise has a vanishing autocorrelation,
<E(t) £(t')> = 0 whenever t' Is different from t, and a delta-peak for t=t’.

For a passive membrane model with time constant t, we can calculate the mean <u(t)>
of the membrane potential and Its autocorrelation at times t and t’ . The variance of the
membrane potential is derived from its autocorrelation for t=t’ by subtracting the mean.
Actual realizations are trajectories with a (Gaussian) distribution around the mean <u(t)>,
The fact that the distribution is Gaussian has not been shown in the lecture today.



11.1 Calculating autocorrelations: second approach
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= fjdt'f(t—t')S(t')
Autocorrelation Mean: (x(j)=[dt'f t-t)(S(t))
(X(Ox()) = 0} = 65109 vit-9)
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Poisson process



11.1 Mean and autocorrelation of filtered spike signal

N ﬁﬂf\\

—— .
S(t) => s(t—-t") - X(®) =] F(s)S(t-s)ds

Assumption: Fiiter <x(t)>=j F(s)(S(t—s))ds
stochastic spiking
rate v(t) mean <X(t)>:j F(s)(v(t-s))ds

Autocorrelation of output
<x(t)x(t')>=<j F(5)S(t—s)ds| F(s')S(t'—s')ds'>

(x(t)x(t") = j F(s)F(s)(S(t-s)S(t'~s")dsds’
Autocorrelation of input



11.1 Conclusion: Mean and autocorrelation of filtered spike train

N -hﬂf\\

Second approach to calculate autocorrelations.

A spike train S(t) Is formulated as a sequence of delta functions.
The expectation <S(t)> of S(t) at time t Is the Instantaneous ‘rate’ v(t).
The auto-correlation of S(t) with S(t') Is <S(t)S(t')>

After filtering with a filter F(s) we get a variable x(t).
The mean and autocorrelation of x can be calculated.
The formulas will be used a lot in this and the next lectures.
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11.2 Autocorrelation of Poisson (preparation)

Justify autocorrelation of spike input:
Poisson process In discrete time

—

S Stochastic spike arrival:

f‘é‘ T Blackboard3

In each small time step At
Prob. Of firing p=vAt

€
Q'
&,
(&

>

NG

Wi

Firing independent between one time step and the next






Exercise 3 now: PoiIsson process in continuous time

Stochastic spike arrival:

S excitation, total rate
G:!::k‘:\'#a I_I /
Next lecture:
In each small time step At 10:57

Prob. Of firing P =v At

Firing independent between one time step and the next

Show that autocorrelation ny\ _ ! 2
b (SE)St))=vot—t)+v

Show that in a a long interval of duration T, (N(T))=vT
the expected number of spikes Is




Quiz — 1. Autocorrelation of Poisson

H

At

The Autocorrelation (continuous time)

(S(t)S(t))

Has units

| | probability (unit-free)

| | probability squared (unit-free)
| | rate (1 over time)

[ ] (1 over time)-squred

spike train




11.2. Autocorrelation of Poisson

math detour
ow NERRTNEEEN

Probability of spike At

IN step n AND step k | |
spike train

Probability of spike in time step:
P. =V, At

Autocorrelation (continuous time)
(SOS(t))=v, o(t-t)+[v I






11.2. Autocorrelation of Poisson: units
| [\
B hﬂ \
\
S(t) =D 6(t-t') - X(t)=| F(s)S(t—s)ds

Assumption: stochastic spiking (Poisson)
rate v(t)

Autocorrelation of outpu
<x(t)x(t ) {} F(s)S(t— s)dsj F(s)S(t'—s")ds >

(X(E)x(t") = H F(s)F(s){(S(t—s)S(t'-s"))dsds’

Autocorrelation of input (Poisson)
We Integrate twice!




Exercise 2 Homework: stochastic spike arrival

_________________________ -
| | Stochastic spike arrival:

@, - .
| e excitation, total rate  (s()) = v
I e{ﬁ“: |_| /'

‘ié ®
| Synaptic current pulses

d
: 4 _tu:_(u_urest)_l_RS(t)
| S(t)=0. > ot-t')
f
|
| 1. Assume that for t>0 spikes arrive stochastically with rate ¥
| - Calculate mean voltage U
] I 2
| 2. Assume autocorrelation (SOSE))=vot-t)+v: (. s
I N~
_Calculate  (Uu®)) =72




11.2 Conclusion: Mean and autocorrelation of the Poisson Process.

St) 1 1 1 X(t), /N
— N

Second approach to calculate autocorrelations.

A spike train S(t) Is formulated as a sequence of delta functions generated
by a Poisson process
The expectation <S(t)> of S(t) at time t Is the instantaneous ‘rate’ v(t),
given by the rate p(t) of the Poisson process.
The auto-correlation of the Poisson Process <S(t)S(t’)> Is

<S()S(1")> = v(t) v(t') + v(t) o(t-1")

Notel: if the variable x Is a filtered version of the spike train with a filter F,

we Insert the autocorrelation of the Poisson process, to get the autocorrelation
and variance of x (see Section 11.1).

Note2: stochastic pulses such as a Poissone spike train is also called ‘shot noise’.
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11.3 Noisy Integrate-and-fire

—

. o« |
for a passive membrane, we F0%e ¥ @
/

VAN
can analytically predict the -
mean of membrane potential
fluctuations

®
0/“‘

Passive membrane

T —U=—(U=Upg) +RIP (1)

dt
Passive membrane

=Leaky Integrate-and-fire
without threshold ADD THRESHOLD

- Leaky Integrate-and-Fire



11.3 Noisy Integrate-and-fire

effective noise current

| L
| vaﬂ\x wigif &
u(t)
LIF T %u:—(u—urest) + R 1(t)
\ noisy Input/
1) =l + e diffusive noise/

stochastic spike
IF u(t)=3THEN u(t+A)=u arrival




11.3 Noisy Integrate-and-fire

fluctuating Input current

I(t)
/ ‘u /\”MMUWA/\M, o G\‘
f W

O

\ fluctuating potential

Random spike arrival



11.3 Noisy Integrate-and-fire (noisy input)

stochastic spike arrival In 1&F — Iinterspike Intervals
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Gerstner et al. (2014),
Neuronal Dynamics,



11.3 Noisy Integrate-and-fire (noisy Input)

Superthreshold vs. Subthreshold regime

O e

0.1
o° o : ' Image:
| | M - Gerstner et al. (2014),
00 o " |

0 50 100 150 200 0 50 100 150 200 Neuronal Dyngmlcs,
o Cambridge Univ. Press;

See: Konig et al. (1996)




11.3. Noisy Iintegrate-and-fire (noisy Input)

2.0 |

1.0

I

0.1

0.0

Image:

S

|SI| distribution

O

50 100 150 200
S

Gerstner et al. (2014),
Neuronal Dynamics,

noisy input/ diffusive noise/
stochastic spike arrival

subthreshold regime:

- firing driven by fluctuations
- broad ISI distribution
- In vIVO like



review- Variability in vivo
Spontaneous activity In Vvivo

Variability
of membrane potential?
awake mouse, freely whisking,

0~ B
= 20 s
£,
= —40 { |
—60 N\ o MW A AN ] "“xwrﬂ-qr’““~w*‘*‘-i"5
() 1 2 3 4 5
Image: t[s]
Gerstner et al. (2014), _ Crochet et al., 2011
Neuronal Dynamics, Subthreshold regime

Cambridge Univ. Press,;
Courtesy of: Crochet et al. (2011)



11.3 Noisy Integrate-and-fire (noisy input)

Stochastic spike arrival:

for a passive membrane, we S =L
can analytically predict the
amplitude of membrane -
potential fluctuations u(t>=;wk2 e(t=t)

= Y, jdt'g(t-t')sk(t')

fluctuating potential

Passive membrane

Leaky Integrate-and-fire
INn subthreshold regime
can explain variations (Au®)Au(t)) = ([u®)F ) - (u())
of membrane potential and ISl



11.3 Conclusion: Leaky integrate-and-fire with noisy Input.

The leaky integrate-and-fire model (LIF) is a passive membrane model together
with a threshold.
When driven with a constant mean current plus a white noise, two regimes emerge:
() Superthreshold regime. The mean current alone would be sufficient to fire spikes.
In this case the interspike interval distribution (1SI) Is fairly regular, visible as a sharp
peak around the noise-free interspike-interval.
(1) Subtrheshold regime. The mean current alone would not be sufficient to fire spikes.

Noise Is essential to make the neuron fire. In this case, the ISl Is very broad and extends
to very long intervals.

In the subthreshold regime we observe fluctuations of the membrane potential in a regime
below threshold and rare spiking, consistent with typical experimental results in vivo.
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Review: Sources of Variability

- Intrinsic noise (lon channels)

. o ‘ \‘
-FInite number of channels (ot

T ('\‘0
Finite temperature \ 00“\

i\

‘..»:::,, ~ -Spike arrival from other neurons
o — -Beyond control of experimentalist |
Noise models? 00““\



11.4 Noise models: Escape noise vs. Input noise

escape process,

stochastic intensity stochastic spike arrival
“ ‘_ (diffusive noise)
""" P
u(t)
t t
escape rate noisy integration
pt) = Tut)=9) £ 8% LRI
dt
Now: Relation between the two models:
Escape noise! see Ch. 9.4 of
Neuronal Dynamics




11.4 Escape noise

escape process

RO
0

escape rate  p(t) = 1 exp(

u(t) —9

escape rate
p(t) = T(u(t)—9)

A A

)

Example: leaky integrate-and-fire model

-

.

d
-—U=—(U-u_.)+RI(l
FeorU=—U=U) +RI)

if spike att' :>u(tf +5):ur

~

/




11.4 stochastic Intensity

escape process o _
Escape rate = stochastic intensity

"""" p(t{ G of point process

escape

Ate p(t) = fu(t) -9

examples




11.4 mean waliting time

T .diu — _(u — urest) + R (t) escape rate
_at y ‘_ o(t)=f(u(t)-9)
713
p(Q_L_ ________ &
7 >>1mS | |
| 1ms t J U
|(t) mean waiting time, after switch
A
(O
e\ao\k 6@\0\“

W






11.4 escape noise/stochastic intensity

Escape rate = stochastic intensity

of point process - Escape rate depends
() = f (u(t)) on momentary distance
of u(t) to threshold
""" PO - u(t) depends on the inp
u(H) but also on previous
: " | spikes

(because of the reset)



Escape rate/stochastic intensity in neuron models
| ] The escape rate of a neuron model has units one over time
| ] The stochastic intensity of a point process has units one over time
| | For large voltages, the escape rate of a neuron model always saturates

at some finite value
| ] After a step In the membrane potential, the mean waiting time until a spike Is
fired Is proportional to the escape rate
| ] After a step In the membrane potential, the mean waiting time until a spike Is
fired Is equal to the inverse of the escape rate
| ] The stochastic Iintensity of a leaky integrate-and-fire model with reset only
depends on the external input current but not on the time of the last reset
| ] The stochastic intensity of a leaky integrate-and-fire model with reset
depends on the external input current AND on the time of the last reset



11.4 Conclusion: Escape noise

All noise models are ad hoc. In part 11.1 we focused on white noise as an approximation
of stochastic spike arrival. We can think of this as noise in the input.

In this section we focused on a different noise model that we call escape noise.

In discrete time, the probabllity to generate a spike with the escape noise model
depends on the momentary distance between the membrane potential u(t) and the
threshold 6.

In continuous time, this ‘probability’ corresponds to a stochastic intensity of spike firing
p(t) = f[u(t) — 6]. We can think of escape noise as a noise in the output.

Escape noise can be combined with a leaky integrate-and-fire model: As soon as a spike
IS fired, the membrane potential Is reset to a lower value so that a second spike becomes
unlikely. In this case a good choice of the function f Is an exponential.
p0=C/A Is a constant the characterizes the mean firing
p(t) =—exp(— —) rate at u(f) =

Here the parameter A indicates how ‘smooth’ the threshold is. In practice, for
u(t) < 0 —3A the neuron is unlikely to fire and for u(t) > 6 + 3A it fires Immediately.
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11.5. Interspike Intervals for time-dependent input

¢
deterministic part of input noisy part of input/intrinsic noise
I(t) — u(t) - escape rate
/Exar_nple: . . h /Example' B
”0”"”68 r |nte|g:;r(at)e-algcligl)re model exponential stochastic intensity
—u=F(u)+
"t p(®) = () = p, XPU) - 9)
if spike att' :>u(tf +§):ur
\ AN %




11.5. Interspike Interval distribution (time-dependent inp.)

eStape protess escape rate BIaCkb Oard
! p(t) = f(u(t)-9)

Survivor function

€8, (tf)) =—p() S, (1)




11.5. Interspike Intervals

A escape process Survivor function ExampleS Now

_________________________ e R ~
POl 5 S1 () =-p(®)S, (¢

£ ; : |

escape rate S| (t t) — eXp(_{[p(tl)dtl)

p(t) = f(u(t) - 9) - ~
“ Interval distribution

P () = A(t) -exp(- [ p(t)dt')

escape \ ~ ~
rate Survivor function




11.5. Renewal theory

Example: I&F with reset, constant input

S R Py T escape rate
p(f) = f (u(tD)) = oy exp(u(t) - 9)

Survivor function

1 S, (t _f) S(t[f) = exp(—tjp(t'\f)dt')

{
; Interval dlstrlbutlon P(t‘f) _ p(t‘f) exp(—jp(t"f)dt')

P (t=t)

— = — & s(t|f)




11.5. Time-dependent Renewal theory

Example: |&F with reset, time-dependent input,

9 PR I_/_)Zt_) ----- esciape rateA A
/\f‘/\ p(fh) = 1 u(tf) = py exp(uct) - 9)
- :
1 Survivor function X t A
S(t[f) S(t[f) = exp(~ ! p(t]f)dt’)
- ,
i t
Interval distribution P(t[f) = o(tff) exp(—[ p(t'[f)dt)
P D= reet fok
£ | — 2 s(tf)




Homework assignement: Exercise 4

neuron with relative refractoriness, constant input

u
\ escape rate | p(t)=p,— for u> g

|

|

|

|

|

|

9 |

G T :
~ o |

T t+A :

. Survivor function ) :
So (t[t) S,(t|t) =+ :

> § I

L l

|

o0 | Interval distribution |
£ o |

Py (tfF) P, () = .

. |

|




Outlook: Helping Humans
Application: Neuroprosthetics

[ Manv aroups
o frontal y group
cortex | . | world wide
P work on this

problem!

---------------------------------
--------------------------------

Sl wa e e

Model of

o ‘Decoding’
Predict intended arm moveme

given Spike Times



11.5 Conclusion: Renewal models

Even though the interspike-interval-distribution is most often used for STATIONARY data, (or
constant input), we can also define an interspike-interval distribution for time-dependent input:
Given an observed spike at time t*, and given that we know the time-dependent input up to time t,
we ask: what is the probability density that the next spike occurs at time t? The answer is given by
the ISI distribution P(t|t").

In the same way we can ask: Given an observed spike at time t*, and given that we know the time-
dependent input up to time t, what is the probability that the neuron ‘survives’ without firing up to
time t? The answer Is given by the survivor function S(t|t").

Similarly, given an observed spike at time t*, and given that we know the time-dependent input up to
time t, what is the momentary rate of firing at time t? The answer is given by the stochastic intensity
p(t[t"), also called the ‘hazard’. The three functions are closely related to each other.

For constant input, all three functions only depend on the time difference t-t*. If the stochastic
iIntensity (e.g., of a neuron model) only depends on the time difference t-t* it Is called a (stationary)
renewal model. If it depends on t-t* and the input (but not on earlier spikes), It is a generalized (or
time-dependent) renewal model. The LIF with escape noise and constant input Is a renewal model,
with time-dependent input It is a generalized renewal model.



11.5. Renewal process, firing probability

THE END

Escape noise = stochastic intensity

-Renewal theory

- hazard function
- survivor function
- Interval distribution

-time-dependent renewal theory
-discrete-time firing probabillity
-Link to experiments

- basis for modern methods of
neuron model fitting
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