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Crochet et al., 2011

awake mouse, cortex, freely whisking, 

Spontaneous activity in vivo

11.1 Review from week 10
Variability 
- of membrane potential? 
- of spike timing?



11.1 Review from week 10
Fluctuations
-of membrane potential
-of spike times

fluctuations=noise?

model of fluctuations?

relevance for coding?

source of fluctuations?

In vivo data
 looks ‘noisy’

In vitro data
 fluctuations



- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels
-Finite temperature

-Network noise (background activity)

-Spike arrival from other neurons
-Beyond control of experimentalist

11.1. Review from week 10



- Intrinsic noise (ion channels)

Na+

K+

-Network noise 

11.1. Review from week 10

In vivo data
 looks ‘noisy’

In vitro data
small fluctuations
nearly deterministic



11.1 Review from week 10: Calculating the mean
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11.1. Fluctuation of potential
for a passive membrane, predict  
-mean 
-variance
of membrane potential fluctuations

Passive membrane
=Leaky integrate-and-fire
without threshold
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Synaptic current pulses of shape α
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11.1. Fluctuation of current/potential
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11.1 Calculating autocorrelations
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11.1. Fluctuation of potential
for a passive membrane, predict  
-mean 
-variance
of membrane potential fluctuations
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White noise: Exercise 1.1-1.2 now
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Input starts here

Assumption:
far away from theshold

Variance of voltage at time t 

Next lecture:
10:15

Report variance as function of time!



First approach: white noise (to mimic stochastic spike arrival)
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11.1 Calculating autocorrelations for stochastic spike arrival

Image:
Gerstner et al. (2014),
Neuronal Dynamics

Autocorrelation of 
membrane potential

variance



11.1 Conclusion:  Mean and autocorrelation of the membrane potential

First approach to calculate autocorrelations.

A spike train S(t) causes a fluctuating current I(t).
We separate the fluctuating current into a mean current <I(t)> and a noise component ξ(t) .
By definition the mean of the noise vanishes:  < ξ(t) >=0 at any moment in time.

If the time constant of the synapse is extremely short, we can formulate the noise
component as white noise. White noise has a vanishing autocorrelation,
<ξ(t) ξ(t’)> = 0 whenever t’ is different from t, and a delta-peak for t=t’.

For a passive membrane model with time constant τ, we can calculate the mean <u(t)>  
of the membrane potential and its autocorrelation at times t and t’ . The variance of the 
membrane potential is derived from its autocorrelation for t=t’ by subtracting the mean.
Actual realizations are trajectories with a (Gaussian) distribution around the mean <u(t)>, 
The fact that the distribution is Gaussian has not been shown in the lecture today.

u(t)S(t)



11.1 Calculating autocorrelations: second approach 
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Assumption: 
stochastic spiking
rate 
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11.1 Mean and autocorrelation of filtered spike signal 
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11.1 Conclusion:  Mean and autocorrelation of filtered spike train

Second approach to calculate autocorrelations.

A spike train S(t) is formulated as a sequence of delta functions.
The expectation <S(t)> of S(t) at time t is the instantaneous ‘rate’ ν(t).
The auto-correlation of S(t) with S(t’) is <S(t)S(t’)>

After filtering with a filter F(s) we get a variable x(t). 
The mean and autocorrelation of x can be calculated.
The formulas will be used a lot in this and the next lectures.
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Stochastic spike arrival:

Justify autocorrelation of spike input:
Poisson process in discrete time

In each small time step
Prob. Of firing

Firing independent between one time step and the next

tp ∆=ν
t∆

Blackboard3

11.2 Autocorrelation of Poisson (preparation) 





Stochastic spike arrival: 
excitation, total rate 

Exercise 3 now: Poisson process in continuous time

Show that autocorrelation
for    

2)'()'()( νδν +−= tttStS

TTN ν=)(

In each small time step
Prob. Of firing

Firing independent between one time step and the next

Show that in a a long interval of duration T,
the expected number of spikes is

tp ∆=ν
t∆

0→∆t

Next lecture: 
10:57



Quiz – 1. Autocorrelation of Poisson

t∆

spike train

( ) ( ')S t S t

The Autocorrelation (continuous time)

Has units

[ ] probability (unit-free)
[ ] probability squared (unit-free)
[ ] rate (1 over time)
[ ] (1 over time)-squred



0FP v t= ∆
Probability of spike in time step:

11.2. Autocorrelation of Poisson

t∆

spike train

math detour
now!

Probability of spike
in  step n AND step k

2
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Autocorrelation (continuous time)





Assumption:  stochastic spiking (Poisson)
rate 
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Autocorrelation of output

Autocorrelation of input (Poisson)
We integrate twice!

11.2. Autocorrelation of Poisson: units



Stochastic spike arrival: 
excitation, total rate 
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Synaptic current pulses

Exercise 2 Homework: stochastic spike arrival

1. Assume that for t>0 spikes arrive stochastically with rate
- Calculate mean voltage

2. Assume autocorrelation

- Calculate
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11.2 Conclusion:  Mean and autocorrelation of the Poisson Process. 

Second approach to calculate autocorrelations.

A spike train S(t) is formulated as a sequence of delta functions generated 
by a Poisson process
The expectation <S(t)> of S(t) at time t is the instantaneous ‘rate’ ν(t), 
given by the rate ρ(t) of the Poisson process.
The auto-correlation of the Poisson Process <S(t)S(t’)> is 

<S(t)S(t’)> = ν(t) ν(t’) + ν(t) δ(t-t’)

Note1:  if the variable x is a filtered version of the  spike train with a filter F,
we insert the autocorrelation of the Poisson process,  to get the autocorrelation
and variance of x (see Section 11.1). 
Note2: stochastic pulses such as a Poissone spike train is also called ‘shot noise’.

x(t)S(t)
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11.3 Noisy Integrate-and-fire

for a passive membrane, we 
can analytically  predict the 
mean of membrane potential 
fluctuations

Passive membrane
=Leaky integrate-and-fire
without threshold
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d syn
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Passive membrane

ADD THRESHOLD
 Leaky Integrate-and-Fire
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11.3 Noisy Integrate-and-fire



I(t)
µ σ

fluctuating input current

fluctuating potential

Random spike arrival

11.3 Noisy Integrate-and-fire



stochastic spike arrival in I&F – interspike intervals

I
0I

ISI distribution

11.3 Noisy Integrate-and-fire (noisy input)

0( ) ( ) ( )synRI t RI t tξ= +

white noise

Image:
Gerstner et al. (2014),
Neuronal Dynamics,



Superthreshold vs. Subthreshold regime

11.3 Noisy Integrate-and-fire (noisy  input)

Image:
Gerstner et al. (2014),
Neuronal Dynamics,
Cambridge Univ. Press;
See: Konig et al. (1996) 



u(t)

11.3. Noisy integrate-and-fire (noisy input)
noisy input/ diffusive noise/
stochastic spike arrival

subthreshold regime:
- firing driven by fluctuations
- broad ISI distribution
- in vivo like

ISI distribution

Image:
Gerstner et al. (2014),
Neuronal Dynamics,



Crochet et al., 2011

awake mouse, freely whisking, 

Spontaneous activity in vivo

review- Variability in vivo

Variability 
of membrane potential? 

Subthreshold regime
Image:
Gerstner et al. (2014),
Neuronal Dynamics,
Cambridge Univ. Press;
Courtesy of: Crochet et al. (2011) 



fluctuating potential
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for a passive membrane, we 
can analytically  predict the 
amplitude of membrane 
potential fluctuations

Leaky integrate-and-fire
in subthreshold regime
can explain variations
of membrane potential and ISI 

Stochastic spike arrival:

11.3 Noisy Integrate-and-fire (noisy input)



11.3 Conclusion:  Leaky integrate-and-fire with noisy input.
The leaky integrate-and-fire model (LIF) is a passive membrane model together 
with a threshold.
When driven with a constant mean current plus a white noise, two regimes emerge:
(i) Superthreshold regime. The mean current alone would be sufficient to fire spikes.

In this case the interspike interval distribution (ISI) is fairly regular, visible as a sharp        
peak around the noise-free interspike-interval.
(ii) Subtrheshold regime. The mean current alone would not be sufficient to fire spikes.
Noise is essential to make the neuron fire. In this case, the ISI is very broad and extends 
to very long intervals.

In the subthreshold regime we observe fluctuations of the membrane potential in a regime 
below threshold and rare spiking, consistent with typical experimental results in vivo.
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- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels
-Finite temperature

-Network noise (background activity)

-Spike arrival from other neurons
-Beyond control of experimentalist

Review: Sources of Variability

Noise models?



ϑ

escape process,
stochastic intensity

ϑ

stochastic spike arrival
(diffusive noise)
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noisy integration

Relation between the two models:
see Ch. 9.4 of 

Neuronal Dynamics

Now:
Escape noise!

t̂ t̂

11.4 Noise models: Escape noise vs. input noise
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11.4 escape noise/stochastic intensity

Escape rate = stochastic intensity
of point process

( ) ( ( ))t f u tρ =

t̂

- Escape rate depends
on momentary distance
of u(t) to threshold

- u(t) depends on the inpu
but also on previous
spikes 
(because of the reset)



Quiz 4
Escape rate/stochastic intensity in neuron models
[ ] The escape rate of a neuron model has units one over time
[ ] The stochastic intensity of a point process has units one over time
[ ] For large voltages, the escape rate of a neuron model always saturates

at some finite value
[ ] After a step in the membrane potential, the mean waiting time until a spike is 
fired is proportional to the escape rate 
[ ] After a step in the membrane potential, the mean waiting time until a spike is 
fired is equal  to the inverse of the escape rate 
[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  only 
depends on the external input current but not on the time of the last reset
[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  
depends on the external input current AND on the time of the last reset



11.4 Conclusion:  Escape noise
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All noise models are ad hoc. In part 11.1 we focused on white noise as an approximation 
of stochastic spike arrival. We can think of this as noise in the input.
In this section we focused on a different noise model that we call escape noise.
In discrete time, the probability to generate a spike with the escape noise model
depends on the momentary distance between the membrane potential u(t) and the 
threshold θ.
In continuous time, this ‘probability’ corresponds to a stochastic intensity of spike firing 
ρ(t) = f[u(t) – θ]. We can think of escape noise as a noise in the output.

Escape noise can be combined with a leaky integrate-and-fire model: As soon as a spike 
is fired, the membrane potential is reset to a lower value so that a second spike becomes 
unlikely. In this case a good choice of the function f is an exponential.

ρ0=c/∆ is a constant the characterizes the mean firing
rate at u(t) = θ 

Here the parameter  ∆ indicates how ‘smooth’ the threshold is. In practice, for 
u(t) < θ − 3∆    the neuron is unlikely to fire and for u(t) > θ + 3∆ it fires immediately. 
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11.5. Interspike Intervals for time-dependent input
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11.5. Renewal theory 
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Example: I&F with reset, time-dependent input, 
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11.5. Time-dependent Renewal theory 
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Homework assignement: Exercise 4



Model of 
‘Decoding’

Predict intended arm movement,
given Spike Times

Application: Neuroprosthetics
frontal
cortex

Outlook: Helping Humans

Many groups
world wide

work on this 
problem!

motor
cortex



11.5 Conclusion:  Renewal models
Even though the interspike-interval-distribution is most often used for STATIONARY data, (or 
constant input), we can also define an interspike-interval distribution for time-dependent input: 
Given an observed spike at time t^, and given that we know the time-dependent input up to time t, 
we ask: what is the probability density that the next spike occurs at time t? The answer is given by 
the ISI distribution P(t|t^).

In the same way we can ask: Given an observed spike at time t^, and given that we know the time-
dependent input up to time t, what is the probability that the neuron ‘survives’ without firing up to 
time t? The answer is given by the survivor function S(t|t^).
Similarly, given an observed spike at time t^, and given that we know the time-dependent input up to 
time t,  what is the momentary rate of firing at time t? The answer is given by the stochastic intensity 
ρ(t|t^), also called the ‘hazard’. The three functions are closely related to each other. 

For constant input, all three functions only depend on the time difference t-t^. If the stochastic 
intensity (e.g., of a neuron model) only depends on the time difference t-t^ it is called a (stationary) 
renewal model. If it depends on t-t^ and the input (but not on earlier spikes),  it is a generalized (or 
time-dependent) renewal model. The LIF with escape noise and constant input is a renewal model, 
with time-dependent input it is a generalized renewal model.



11.5. Renewal process, firing probability

Escape noise = stochastic intensity

-Renewal theory
- hazard function
- survivor function
- interval distribution

-time-dependent renewal theory
-discrete-time firing probability
-Link to experiments

 basis for modern methods of
neuron model fitting

THE END
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