
Name 1:
Name 2:

TCP/IP NETWORKING

LAB EXERCISES (TP) 3
SOCKET PROGRAMMING

Abstract

Lab 3 is both a programming lab and an analysis lab.
On one hand, you will program client/server applications, you will apprehend TCP/IP principles

from the programmer’s point of view with the notion of sockets. You will experiment different protocols
and ways of communication (TCP, UDP, unicast, multicast). Furthermore, you will see how Transport
Layer Security (TLS) is used to secure TCP connections.

On the other hand, you will analyze traffic traces with Wireshark to understand the mechanisms
hidden from the programmer’s perspective. It will highlight some fundamental mechanisms of UDP,
TCP (packetisation, acknowledgment,...) and TLS (secure handshake, certificates, ...).

ORGANIZATION OF THE LAB

WHAT PARTS TO DO

If you have no prior experience with programming, you should consider doing

• part 1 and 2 the first week,
• parts 3, 4 and 5 the second week.
• You may safely skip part 6 (which is optional and for bonus).

If you have some experience with programming, you may

• skip part 1.1 (which is not graded),
• do parts 1.2, 2, 3, 4 and 5
• and do part 6 if time permits (it is optional and for bonus).

1

WHAT TO DO IN EACH PART

In each part, you will be required:

• to DESIGN one (or several) scripts according to the requirements and to TEST it against servers that
we provide,

• to ANALYZE the behavior of the application by means of prints, packets captures, bash commands,
and to ANSWER to quizzes within Moodle,

• to SUBMIT your script(s) for scoring.

GROUPS

As with other labs, this one is also performed in groups. You need to register your Moodle lab group in
the scoring system of this lab (see later). Use the team section and ensure that the team leader (the student
whose username will be written in bold) answers the quizzes on Moodle. Only his/her quizzes’ submissions
will be considered for grading.

ENVIRONMENT - DESIGN AND TEST

You have free choice of using your preferred operating system and programming language. However,
we highly recommend you to use Python3 as it will be the only language supported by the TA team
during the labs. Python3 is available for most operating systems (see https://www.python.org/
downloads/). If your choice is different, we will be there to answer all your theoretical questions. How-
ever, depending on the specific questions you might have about other environments, the support you might
get might be limited.

Furthermore, the scoring system only supports Python3 scripts as well. If your choice is different, the
scoring of your scripts will be performed manually by the TA team and you won’t get the chance for several
attempts.

If you do not want to use Python3, you are required to send an e-mail with your choice to alaeddine.
elfawal@epfl.ch before the end of the first week of the lab.

Except specifically asked, the use of a virtual machine is not required.

MOODLE QUIZZES - ANALYZE AND ANSWER

As opposed to other labs in this course, the current document will not be your lab report and doesn’t need
to be sent to the TA team. Your analysis skills will be tested on quizzes available on Moodle. 7 quizzes
are available on Moodle. The first one is relative to section 1.1 and is not graded. The last one is relative to
section 6 and is graded only for bonus. Thus, only 5 quizzes are mandatory and graded.

Only the score of the team leader (the student appearing in bold in the scoring system, see next part) will
be taken into account. You have unlimited attempts and only the best score among all your attempts will be
kept for each quiz. More information will follow for each part.

The quizzes open on Thursday, 29th October 2020, 00:00 and close on Wednesday, 11th November
2020, 23:55 Lausanne local time. Attempts need to be submitted before the deadline to be graded. Don’t
forget to use the Submit all and finish button on Moodle.

2

https://www.python.org/downloads/
https://www.python.org/downloads/
alaeddine.elfawal@epfl.ch
alaeddine.elfawal@epfl.ch

PREPARING YOUR SCRIPTS FOR SCORING - SUBMIT

The scoring system is running on https://icsil1-ds-105.epfl.ch. It is accessible from within
EPFL (EPFL wifi) or via the EPFL VPN.

To succeed the tests of the scoring system, it is essential that you respect the prototype of each of your script,
i.e. the specifications of the command line used to launch your script. You have unlimited attempts1 and
only the best score for each part will be kept. However, as the scoring may take some time, we recommend
that you thoroughly test your script before submitting it to the system.

Do not write any personal data in your Python scripts: Neither your name, nor your email address, nor
your SCIPER number.

Even if you don’t use the scoring system (in the case you don’t want to use Python3), make sure to register
your team using the dedicated tool on the website of the scoring system.

The system opens on Thursday, 29th October 2020, 00:00 and closes on Wednesday, 11th November
2020, 23:55 Lausanne local time. All attempts submitted before the deadline will be processed.

1There is a (high) attempt limit but more for security purposes. If you do happen to reach that limit, send an email to the TA
team.

3

https://icsil1-ds-105.epfl.ch

1 SOCKET PROGRAMMING BASICS

This part of the lab aims at introducing you to socket programming. In particular, you will be first asked to
understand and execute specific examples of code. Part 1.1 is not graded, however it covers different topics
that should give you the necessary background for the rest of this lab. If you believe that you are already
familiar with the topics covered here feel free to skip it and proceed to part 1.2. If you have no background
on Python programming and you feel that you need more assistance with the following examples please do
not hesitate to ask for help from any of the TAs.

Scripts presented in this part are available for download on Moodle.

1.1 [NOT GRADED] SOCKET PROGRAMMING IN PYTHON PRIMER

DESIGN and TEST: For this part, you don’t even need to be connected to the Internet. You will need it
only at the end to answer Moodle questions.

The following examples of code are inspired from the Python documentation (for Python 3.7, available at
https://docs.python.org/3.7/library/socket.html). Implement and run the two follow-
ing examples (source codes available on Moodle) of a client and a server to test if your python implementa-
tion is working. For those who are not sure which editor to use for Python programming we suggest IDLE
that comes by default with the version of Python distributed by www.python.org.

Code A:

import socket

HOST = ’localhost’ # The remote host
PORT = 50007 # The same port as used by the server

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.sendto(b’Hello, Romeo! ’, (HOST,PORT))
s.close()
print(’Message sent’)

Code B:

import socket

HOST = ’’ # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind((HOST, PORT))
while True:

data, addr = s.recvfrom(1024)
print(’From: ’, addr)
print(’Received: ’, data.decode(’utf-8’))

4

https://docs.python.org/3.7/library/socket.html
www.python.org

ANALYZE and ANSWER: For this part, answer the quiz [Not graded] Lab3 - Part 1.1 on Moodle.

Q1/ Examine the two codes...

...and answer to Lab3 Part1.1 Question 1 on Moodle.

Q2/ Examine the two codes...

...and answer to Lab3 Part1.1 Question 2 on Moodle.

Remark: If you closely examine Code B, you will notice that the while loop is a loop that has two
print lines that print the received data and the source address. However, these lines are executed only
a finite number of times (only once). The reason for this behaviour is because the code uses a blocking
socket, i.e., if no incoming data is available at the socket, the recv call blocks and waits for data to arrive.
In blocking sockets, the recv, send, connect (TCP only) and accept (TCP only) socket API calls will
block indefinitely until the requested action has been performed. This behaviour can be modified either by
setting a certain flags to make the socket non-blocking or by setting a timeout value on blocking socket
operations. Note that, in this lab we expect you to use only blocking sockets.

Q3/ Answer to Lab3 Part1.1 Question 3 on Moodle.

Q4/ Answer to Lab3 Part1.1 Question 4 on Moodle.

Don’t forget to submit and review your attempt on Moodle by using the Submit all and finish button.

1.2 [GRADED] YET ANOTHER SOCKET EXAMPLE IN PYTHON

DESIGN and TEST: For this part, you don’t even need to be connected to the Internet. You will need it
only to answer Moodle questions.

There might be situations when you force a TCP program to terminate and you may want to restart it im-
mediately after that. When you close the program (i.e., close the socket), the TCP socket may not close
immediately. Instead it may go to a state called TIME WAIT. The kernel closes the socket only after the
socket stays in this state for a certain time called the Linger Time. If we restart the program, before the
Linger Time of the previous session expires, you may get Address already in use error message
because the address and port numbers are still in use by the socket that is in TIME WAIT state. This mecha-
nism ensures that two different sessions are not mixed up in the case that there are delayed packets belonging
to the first session.

Usually, this protection mechanism is not necessary because severe packet delays are not very likely in
common networks. If you want to avoid seeing the above mentioned error you can do it by setting the reuse
address socket option:s.setsockopt(socket.SOL SOCKET, socket.SO REUSEADDR, 1).

5

Below we give you another example such that one of the applications echoes back what it has received from
the other. The example (Code C) also shows how the SO REUSEADDR socket option is used.

Code C:

import socket

HOST = ’localhost’
PORT = 5002

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind((HOST, PORT))
sock.listen(1)

while True:
connection, addr = sock.accept()
while True:

data = connection.recv(16).decode()
print("received:", data)
if data:

connection.sendall(data.encode())
else:

print("No more data from", addr)
break

connection.close()

Code D:

import socket

HOST = "localhost"
PORT = 5002

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((HOST,PORT))

message = "Oh Romeo, Romeo! wherefore art thou Romeo?"
print("sending:", message)
sock.sendall(message.encode())

received = 0
expected = len(message)

while received < expected:
data = sock.recv(8).decode()

6

received += len(data)
print (’received:’, data)

while True:
pass

ANALYZE and ANSWER: For this part, answer the quiz [Graded] Lab - Part 1.2 on Moodle.

Q5/ Examine the two codes...

...and answer to Lab3 Part1.2 Question 1 on Moodle.

Q6/ Examine the two codes...

...and answer to Lab3 Part1.2 Question 2 on Moodle.

Launch Code C and run the following command on a separate terminal:

• on Linux:

ss -4an | head -n 1 && ss -4an | grep ":5002"

• on Windows:

– If you are using Powershell (preferred):

netstat -an | Select -First 4 ; netstat -an | findstr ":5002"

– If you are using cmd :

netstat -an | findstr ":5002"

• on MacOS:

netstat -an | head -n 2 && netstat -an | grep "5002"

Q7/ Examine the output of the command...

...and answer Lab3 Part1.2 Question 3 on Moodle.

Now launch Code D on a separate terminal and re-run the above command.

7

Q8/ Examine the output of the command...

...and answer Lab3 Part1.2 Question 4 on Moodle.

Q9/ Answer Lab3 Part1.2 Question 5 on Moodle.

Q10/ Answer Lab3 Part1.2 Question 6 on Moodle.

Q11/ Answer Lab3 Part1.2 Question 7 on Moodle.

Q12/ Now press Ctrl + c to terminate Code D.

Answer Lab3 Part.2 Question 8 on Moodle.

Don’t forget to submit and review your attempt on Moodle by using the Submit all and finish button.

N.B: In this lab, messages exchanged using sockets are encoded as unicode objects. Therefore, when you
want to send data, you must encode it first using encode(’utf-8’) or simply encode() (as can be seen
in the example codes given above). Similarly, when you receive the data at the other end, you’ll need to
convert it back (decode it) using decode(’utf-8’) or simply decode().

Useful links

• Python documentation on socket: http://docs.python.org/3.7/library/socket.html
• The Python socket documentation is not complete. It is often useful to look at the Unix documen-

tation of the corresponding functions. In particular, the socket options are described by typing man

7 socket, man 7 ip or man 7 ipv6 in a terminal. These pages are also available directly on the
internet, for example http://linux.die.net/man/7/ipv6.

8

http://docs.python.org/3.7/library/socket.html
http://linux.die.net/man/7/ipv6

2 [GRADED] PACKETIZATION

DESIGN and TEST: For this part, you need to be connected to the Internet by any mean of your choice.
For example, you can be connected to the epfl wifi or via your home router. A server is running for you
at tcpip.epfl.ch, port 5003.

In this part of the lab, you will write a TCP client. The aim of this part is to demonstrate the fact that TCP
is a stream-oriented protocol. In other words, messages are written to a socket as a stream but packetization
of this streamed data is an independent process. We will have a look at the difference between packets and
messages.

N.B: In this part of the lab you are required to develop a solution that uses IPv4 sockets.

Let’s assume we have a Phasor Measurement Unit (PMU) device as part of a Smart Grid infrastructure.
The PMU runs a server application that waits for a command from a Phasor Data Concentrator (PDC). On
receiving a command from the PDC, the PMU sends n short messages with the text This is PMU data

i, where i is the message number such that i = 0, 1, ..., n−1. The server closes the connection after sending
the n messages. The PDC does not know the value of n a priori. The command message from the PDC has
the format CMD short:d, where d is the time interval in seconds between two consecutive send() calls at
the PMU. The commands should be given as a command line argument to the client.

For your convenience, we set up a TCP server at tcpip.epfl.ch that emulates the PMU application.
The server port number is 5003. Your job is to write the TCP client application of the PDC. The client
application should display the received message on screen such that each of the n messages is displayed on
a separate line, i.e., line 0 should display This is PMU data 0, line 1 This is PMU data 1, ... and
so on.

The prototype of your application PDC.py must be:

python3 PDC.py <server> <port> <command>

where:

• <server> is either the IPv4 address of the server or its domain name.
• <port> is the port number of the server
• <command> is the command to send to the server, i.e. either CMD short:0 or CMD short:1 or
CMD floodme (see later).

ANALYZE and ANSWER: For this part, answer the quiz [Graded] Lab3 - Part 2 on Moodle.

Q13/ Use your application to send CMD short:d with d=0 and then d=1 to the PMU server described above.

Answer to Lab3 Part2 Question 1 on Moodle.

Q14/ Start Wireshark and then run your client program with the two d values. Each time observe the
captured traffic.

Answer to Lab3 Part2 Question 2 on Moodle.

9

Q15/ Answer to Lab3 Part2 Question 3 on Moodle.

Q16/ Answer to Lab3 Part2 Question 4 on Moodle.

Now, modify your client application at the PDC such that it sends a different type of command with the
format CMD floodme to the TCP server (PMU). Again the command should be given as a command line
argument to the client. On receiving this command, the server sends a large message to the client by invoking
send() only once as opposed to the above scenario where send() was invoked n times. The server closes
the connection after sending the message to the client. Note that the exact size of the data the server sends is
not known to the client a priori. Your client program should receive the whole message sent from the server
and display it on screen.

Q17/ Start Wireshark and then run your client program such that it sends the CMD floodme to the server.

Answer to Lab3 Part2 Question 5 on Moodle.

Q18/ Answer to Lab3 Part2 Question 6 on Moodle.

Q19/ Answer to Lab3 Part2 Question 7 on Moodle.

Don’t forget to submit and review your attempt on Moodle by using the Submit all and finish button.

SUBMIT: To submit your script, be sure you are connected to the EPFL network (either on campus or re-
motely through VPN). Submit your PDC script for scoring: go to https://icsil1-ds-105.epfl.
ch and in “New submission”, select “Part2 - Packetization”.

10

https://icsil1-ds-105.epfl.ch
https://icsil1-ds-105.epfl.ch

3 [GRADED] UDP PACKET TRANSMISSION

DESIGN and TEST: For this part, you don’t even need to be connected to the Internet. You will need it
only at the end to answer Moodle questions and for script submission. You will use the provided virtual
machine on Moodle.

In Part 2, we have seen how a PDC can send specific commands to a PMU and receive replies from the
PMU on a reliable (TCP) connection. In this section, we will see how a PDC informs a PMU to reset its
clock using an unreliable (UDP) protocol. The PDC sends a reset command RESET:n, where n = 20 is
the number of seconds by which the PMU has to advance its clock. On receiving this command, the PMU
chooses a random value X where 0 ≤ X ≤ n is the actual offset it uses to reset its clock. The PMU also
informs the PDC about the exact offset value it uses.

Your task is to write a UDP client (PDC) that sends UDP packets containing the reset command stated above.
The client must keep retransmitting the message until it receives an acknowledgement from the PMU. The
acknowledgement from the PMU has the format OFFSET=X where X is the offset it chose to reset its clock.
Use a timeout value of 1 sec to wait for an acknowledgement from the PMU before retransmitting again.

The prototype of your application PDC.py must be:

python3 PDC.py <server> <port>

where:

• <server> is the domain name of the server (from which you have to retrieve both its IPv4 and Ipv6
addresses)

• <port> is the port number of the server

Using your client, send the reset commands to a UDP server (PMU) running at localhost on port 5004
(as explained below). This machine is dual-stack and, depending on the time of day, the server runs either in
IPv4 or IPv6. Your client must be able to send the command to the server on both IPv4 and IPv6 sockets
and should detect automatically if the server runs on IPv4 or on IPv6 (the scoring system we will test both
with a server on IPv4 and a server on IPv6).

The code of the PMU contains the following lines:

while True:
data,addr = recvfrom();
if random.random() >= some_probability:

s.sendto(b’OFFSET=X’,addr);

As you can observe, the PMU drops some packets on purpose with a certain probability.

Thus, you should send out packets both in IPv4 and IPv6, since you do not know whether the packets are
lost due to the server dropping them, or due to the fact that you used the wrong protocol.

Test your script several times.

In order to avoid IPv6 tunnel interoperability issues, you will launch the server on localhost (the virtual
machine). It is listening on port 5004. To this end, we provide you with the compiled python files:

• run dual server.pyc

• p3server v4.pyc

• p3server v6.pyc

Be sure to put all these files within the same directory. The server can be launched using:
python3 run dual server.pyc

11

In order to resolve the localhost in both IPv4 and IPv6 addresses, check the file /etc/hosts and verify
that the following lines are added:

127.0.0.1 localhost

::1 localhost loopback

If not, you need to add the missing lines. As you can notice, /etc/hosts is the local DNS.

SUBMIT: Submit your script for scoring: go to https://icsil1-ds-105.epfl.ch and in “New
submission”, select “Part3 - Dual UDP ipv6/ipv4”.

ANALYZE and ANSWER: For this part, answer the quiz [Graded] Lab3 - Part 3 on Moodle.

Run the client 60 times and count how many packets you need to send before receiving an acknowledgement.

You may modify your above script in order to add a for loop taking care of those 60 tests. However, do not
send that modified version to the scoring system.

This experiment can take more than 5 minutes. So you can leave the client running and continue with the
next part.

Q20/ Answer to Lab3 Part3 Question 1 on Moodle

Don’t forget to submit and review your attempt on Moodle by using the Submit all and finish button.

12

https://icsil1-ds-105.epfl.ch

4 [GRADED] UDP MULTICAST

DESIGN and TEST:For this part, you don’t even need to be connected to the Internet. You will need it
only at the end to answer Moodle questions and for script submission. You will use the provided virtual
machine on Moodle.

The Swisscom Internet TV has a weekly cultural TV program on which they multicast their production to
their subscribers on the internet on a given multicast address. This week, they are multicasting the play
Romeo and Juliet to their subscribers on an IPv4 multicast group address 224.1.1.1 on port 10505,
using any source multicast, in the following format:

• The first 6 bytes represent an ID coded as a Python bytes object (e.g., b’swcmTV’).
• The next bytes form the message from the play.

The Swisscom multicast server is emulated by a server running on the virtual machine. Hence, you do not
need to be connected to the internet. All what you need is to create/launch the provided virtuel machine.

4.1 LISTENING TO SWISSCOM INTERNET TV PROGRAM

Your first task is to write a multicast receiver that joins the above multicast group, listens on port 10505,
and displays the exchanged multicast messages. Your receiver will run on the virtual machine.

The prototype of your application receiver.py must be:

python3 receiver.py <group> <port>

where:

• <group> is the multicast group address on which to listen
• <port> is the port number on which to listen

Your receiver application must print the received messages (one message per line).

ANALYZE and ANSWER: For this part, answer the quiz [Graded] Lab3 - Part 4 on Moodle.

Q21/ Answer to Lab3 Part4 Question 1 on Moodle

Start Wireshark and launch your receiver.

SUBMIT: To submit your script, be sure you are connected to the EPFL network (either on campus or
remotely through VPN). Submit your receiver script for scoring: go to https://icsil1-ds-105.
epfl.ch and in “New submission”, select “Part4 - Multicast: Receiving multicast messages”.

4.2 ACTIVE PARTICIPATION FROM SUBSCRIBERS

In addition to listening to the cultural program, Swisscom encourages its subscribers to actively participate
in the program by sending their opinions about the program to the multicast group.

Your second task is to write a program that reads text from the keyboard and sends the text to the multicast
group in the same format as the messages from Swisscom, i.e., the UDP packets should contain in the first 6

13

https://icsil1-ds-105.epfl.ch
https://icsil1-ds-105.epfl.ch

bytes a CAMIPRO number identifying the source (e.g., b’123456’), followed by the text you write in the
standard input.

The prototype of your application sender.py must be:

python3 sender.py <group> <port> <sciper>

where:

• <group> is the multicast group address on which to send the message
• <port> is the port number on which to send
• <sciper> is your sciper number

Q22/ Answer to Lab3 Part4 Question 2 on Moodle

In order to test you multicast sender, launch the multicast receiver you wrote in (4.1) and then launch your
multicast sender with your sciper number and send a text of your choice. Your multicast receiver should
receive the text, in addition to the text it receives from the Swisscom Internet TV.

SUBMIT: To submit your script, be sure you are connected to the EPFL network (either on campus or
remotely through VPN). Submit your sender script for scoring: go to https://icsil1-ds-105.
epfl.ch and in “New submission”, select “Part4 - Multicast: Sending multicast messages”.

14

https://icsil1-ds-105.epfl.ch
https://icsil1-ds-105.epfl.ch

5 [GRADED] EXCHANGE OF INFORMATION VIA A TLS SERVER

This part of the lab is an extension of Section 2. In 2, we saw how a PDC sends a set of commands to a
PMU and how the PMU replies to such commands. The communication between the PDC and the PMU
was over an insecure channel. In this part of the lab, we ask you to secure the communication between
the PDC (client) and the server (PMU) when the PDC sends the command CMD short:d with d = 0. As
seen in class, the TLS protocol adds security to TCP by enforcing confidentiality, entity authentication and
message authentication.

5.1 TLS LAB EXERCISE

DESIGN and TEST: For this part, you don’t need to be connected to the Internet. You will need it only
at the end to answer Moodle questions and for script submission. You need the openssl software. We
will provide command-line instructions for Ubuntu operating systems. We will provide as well a compiled
version of the PDC to use in this part. In order to avoid compatibility issues, you are highly recommended
to use the virtual machine.

As mentioned above, we ask you to secure the communication between the PDC (client) and the server
(PMU) when the PDC sends the command CMD short:d with d = 0. In Section 2, we are grading you on
your client (PDC) program but in this section, we provide an executable of the client program (on Moodle)
and ask you to create the server (PMU) program. Hence, we will grade only the PMU program. The message
exchange protocol itself should stay the same as in Section 2. In order to secure the communication, we
first need to generate the PMU’s secret/public key pair. This can be done using an openssl command under
Linux, if you have another OS you can simply use the same VM as in Lab 1. Note that openssl is not
installed by default. In order to install it, make sure the Network access mode of your network settings is
set to NAT and type the following command in a terminal:

sudo apt-get install openssl

Once you have an openssl-enabled environment you can generate an RSA secret/public key pair of 2048
bits with the following command:

openssl genrsa -out CAMIPRO1 key.pem 2048

The key pair is stored in the CAMIPRO1 key.pem file.

Now that you have generated a key pair for the PMU, you need to ask a trusted Certificate Authority to sign
a certificate binding the ID of the PMU, with its public key. For this, you must generate a certificate request
with the following command:

openssl req -new -key CAMIPRO1 key.pem -out CAMIPRO1.csr

You should be asked to enter some contact information (you can be creative if you want). At the point
where you are asked to “enter the following ‘extra’ attributes”, please leave empty answers. This will create
a .csr certificate request file.

15

SUBMIT: We have created a Certificate Authority for this lab that will sign your certificate. To obtain
your signed certificate, go to https://icsil1-ds-105.epfl.ch and in “New submission”, select
“Part5 - TLS: Sign your certificate”. After sucessuful completion, use the link to download the full content
of your submission. The signed certificate is in the “output” folder.

. To acces https://icsil1-ds-105.epfl.ch, be sure you are connected to the EPFL network (either on campus or remotely through VPN).

You now have three important files that will be required by the TLS/SSL protocol that you will use:

• your signed certificate .crt,
• your key pair file CAMIPRO1 key.pem,
• the CA certificate Part5 ca.crt available on Moodle.

Using the above files, you need to create a secure PMU application. It needs to run on localhost and use an
IPv4 socket. When launched, the PDC will try to open a secure connection with your server on port 5003,
requiring its authentication, and then it will send you the command CMD short:0. On reception, your PMU
server must answer with AT LEAST This is PMU data 0, followed by several other messages This is

PMU data i, for a total number of messages of your choice.

The prototype of your application secure pmu.py must be:

python3 secure pmu.py <certificate> <key>

where:

• <certificate> is the path to your signed certificate
• <key> is the path to your secret key

This time, as opposed to previously, you need to hardcode the address “localhost” as well as the port number
5003.

The provided client program Part5 PDC.pyc (on Moodle) can be launched using:

python3 Part5 PDC.pyc CMD short:0 <ca-certificate>

where:

• <ca-certificate> is the path to the CA certificate

After making sure your code works, open Wireshark, run your code (run the server before the client).

ANALYZE and ANSWER: For this part, answer the quiz [Graded] Lab3 - Part 5 on Moodle.

Q23/ Answer to Lab3 Part5 Question 1 on Moodle.

Q24/ Answer to Lab3 Part5 Question 2 on Moodle.

Q25/ Answer to Lab3 Part5 Question 3 on Moodle.

16

https://icsil1-ds-105.epfl.ch
https://icsil1-ds-105.epfl.ch

Q26/ Answer to Lab3 Part5 Question 4 on Moodle.

SUBMIT: To submit your script, be sure you are connected to the EPFL network (either on campus or
remotely through VPN). Submit your PMU script for scoring, together with your certificate and your
private key: go to https://icsil1-ds-105.epfl.ch and in “New submission”, select “Part5 -
TLS : Secure PMU”.

17

https://icsil1-ds-105.epfl.ch

6 [BONUS] WEBSOCKETS

Remember that in Part 2, you have designed a PDC that receives data from a PMU using an unsecure TCP
connection. We have seen that TCP is a stream-oriented protocol. Messages sent over TCP may be grouped
together within a same packet, and they are delivered to the application without any separator between
them. We have seen that in this case, it is your responsibility to decode the data and understand how they
are separated from each other.

In Part 3, you have implemented a datagram-oriented protocol based on UDP. We have seen that each UDP
packet contains one message, which reduces the effort required to decode the data. However you have seen
that this effort is transferred into implementing your own retransmission mechanism.

To reduce the effort of data decoding left to the programmer, while keeping a reliable TCP-based transport,
protocols have been designed on top of TCP. HTTP (RFCs 1945, 2068, 2616 and 7230-7237), FTP (RFC
3659) and SMTP (RFCs 821 and 5321) are famous examples. In this part, you will study WebSocket, one
of these protocols, designed to transport messages with very low decoding left to the programmer.

6.1 BACKGROUND

The WebSocket protocol (https://tools.ietf.org/html/rfc6455) is a TCP-based application layer protocol that
provides a persistent full-duplex TCP connection between a client and a server. Although it was originally
designed to be implemented in web browsers and web servers, it can be used between any server and any
client. The WebSocket protocol consists of an initial handshake phase followed by basic message framing
mechanism on top of TCP.

The WebSocket handshake phase is based on HTTP and utilizes the HTTP GET method with an “Upgrade”
request. The HTTP GET “Upgrade” request is sent by the client and then answered by the server with
an HTTP 101 status code. Once the handshake is completed, the connection upgrades from HTTP to the
WebSocket protocol. After the upgrade to the WebSocket protocol, both the client and server reuse the
underlying TCP connection for sending WebSocket messages and control frames to each other. This con-
nection is persistent and can be used for multiple message exchanges. A WebSocket defines message units
to be used by applications for the exchange of data. A single message can optionally be split across several
data frames. This allows sending messages where initial data is available but the complete length of the
message is unknown.

The WebSocket resource URL uses its own custom prefix: “ws” for plain-text and “wss” for secure Web-
Socket connections. In this lab we will focus only on the plain-text WebSocket connections. But suffice to
say that the secure WebSocket connection is established using TLS with TCP transport.

Resources:

• https://tools.ietf.org/html/rfc6455
• http://chimera.labs.oreilly.com/books/1230000000545/ch17.html

6.2 WEBSOCKETS IN ACTION

DESIGN and TEST: For this part, you need to be connected to the Internet by any mean of your choice.
For example, you can be connected to the epfl wifi or via your home router. A server is running for you
at tcpip.epfl.ch, port 5006.

In this part of the lab, we are going to repeat the same set of experiments we did in Part 2, but this time using
WebSockets instead of simple TCP sockets. We have already implemented the WebSocket server for you
and it is waiting for incoming connections at ws://tcpip.epfl.ch:5006. Your task is to implement
a WebSocket client that connects to the server. A WebSocket client can be implemented using different

18

https://tools.ietf.org/html/rfc6455
http://chimera.labs.oreilly.com/books/1230000000545/ch17.html

languages. However, to be consistent with the rest of the lab, we encourage you to use python3 to implement
your client. For this, you will have to install the websocket-client2 module for python3. This module
provides the low level APIs to implement your client.

Following the same approach as in the previous experiment, your WebSocket client will send commands to
the WebSocket server and the server will reply different types and numbers of messages depending on the
type of command it receives.

For the first part of the experiment, your client should send CMD short:0 command to the server. On
receiving this command, the WebSocket server replies with n consecutive short messages with the payload
This is PMU data i to the server with 0 Seconds sleep time between each call to send() and then
closes the connection. Your client must display each such message from the server in a separate line.

The prototype of your web-socket based PDC.py must be:

python3 PDC.py <server> <port> <command>

where:

• <server> is either the IP address of the server or its domain name
• <port> is the port to connect to
• <command> is the command to send

ANALYZE and ANSWER: For this part, answer the quiz [Bonus] Lab3 - Part 6 on Moodle.

Use your application so that it sends the command CMD short:0 to the server.

Q27/ Answer to Lab3 Part6 Question 1 on Moodle.

Now, modify your client application such that it sends the CMD floodme command to the server. On re-
ceiving the command, the server replies with a large text using a single send() invocation to your client
and closes the connection. Your client does not know the exact size of the message from the server a priori.
Your client should receive and display the whole message properly.

Q28/ Answer to Lab3 Part6 Question 2 on Moodle.

Q29/ Answer to Lab3 Part6 Question 3 on Moodle.

Q30/ Answer to Lab3 Part6 Question 4 on Moodle.

SUBMIT: To submit your script, be sure you are connected to the EPFL network (either on cam-
pus or remotely through VPN). Submit your websocket-based PDC script for scoring: go to https:
//icsil1-ds-105.epfl.ch and in “New submission”, select “Part6(Bonus) - Websocket”.

2using sudo pip3 install websocket-client for a linux-based OS with pip installed

19

https://icsil1-ds-105.epfl.ch
https://icsil1-ds-105.epfl.ch

	Socket Programming Basics
	[Not graded] Socket Programming in Python Primer
	[Graded] Yet another socket example in Python

	[Graded] Packetization
	[Graded] UDP packet transmission
	[Graded] UDP multicast
	Listening to Swisscom Internet TV Program
	Active Participation from Subscribers

	[Graded] Exchange of Information via a TLS Server
	TLS lab exercise

	[Bonus] WebSockets
	Background
	WebSockets in action

	Name 1::
	Name 2::

