Low-power radio design for the IoT Exercise 1 (25.02.21)

Christian Enz

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Problem 1 L Impedance Matching Network

For the L impedance matching network shown in Fig. 1, address the following points.

- Determine L and C.
- Indicate the main disadvantage of this network and a possible solution.

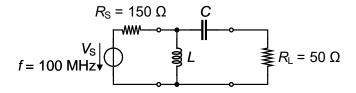


Figure 1: Matching network

Part I: Consider the example for the Π impedance matching network shown in the slides 24 and 25 (Chapter 2). In this example, to calculate the value of R_{virt} , R_{max} is taken equal to R_S (3000 Ω). Repeat the same example by taking R_L (50 Ω) as the resistance value used to calculate R_{virt} . In this example, Q is equal to 10 and the resonant frequency, f, is 1 MHz.

- Find the new values for X_{c1} and C_1 , X_{c2} and C_2 , X_L and L.
- Compare the values for L, C_1 and C_2 with the ones obtained in the example shown in the slides.

Part II: Design the Π filter shown in Fig. 2 for a Q of 5 and a value of f equal to 27 MHz.

- Calculate two values for R_{virt} , one by using R_S and the other by using R_L . Reject one of the two values and motivate the choice.
- Determine X_L , L, X_{c1} , C_1 , X_{c2} , C_2 .

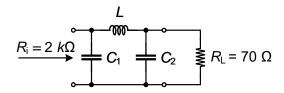


Figure 2: Π filter

Problem 3 Tapped-capacitor Impedance Matching Network

The circuit in Fig. 3 is a tapped-capacitor impedance matching network. Assume that this network operates at $f=1\,\mathrm{MHz}$ and that $C_1=200\,\mathrm{pF},\,C_2=1000\,\mathrm{pF}$ and $R_L=200\,\Omega.$

• Determine the Q, R_{in} and L for the network in Fig. 3. (Hint: Convert R_L and C_2 to a series equivalent.)

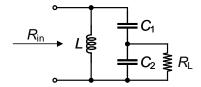


Figure 3: Tapped-capacitor impedance matching network