Low-power radio design for the IoT
 Exercise 3 (18.03.2021)

Christian Enz
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Problem 1 Nonlinearity and Time Variance

A list of input-output equations for several systems are given below. The instantaneous input is $x(t)$ and the instantaneous output is $y(t)$.
a) $2 y(t)=5 x(t)+7$
b) $2 y(t)=5 x^{2}(t)+x(t)$
c) $2 t y(t)=5 x(t)+7$
d) $\frac{d y(t)}{d t}+2 y(t)=3 x(t)$
e) $\frac{d^{2} y(t)}{d t^{2}}+3 y(t) \frac{d y(t)}{d t}=5 x(t)$

- Classify each system as time invariant or time variant, linear or nonlinear and with memory or memoryless.

Problem 2 Third-Order Input Intercept Point

Consider the scenario shown in Fig. 1, where $\omega_{3}-\omega_{2}=\omega_{2}-\omega_{1}$ and the band-pass filter (BPF) provides an attenuation of 17 dB at ω_{2} and 37 dB at ω_{3}.

Figure 1: Cascade of BPF and amplifier.

- Compute the $A_{I I P 3}$ of the amplifier such that the intermodulation product falling at ω_{1} is 20 dB below the desired signal.
- Suppose an amplifier with a voltage gain of 10 dB and $A_{I I P 3}=3.979 \mathrm{dBm}$ precedes the band-pass filter. Calculate the $A_{I I P 3}$ of the overall chain (neglect the second order nonlinearities and the nonlinearity of the BPF).

Problem 3 Cascade of Nonlinear Stages

The circuit in Fig. 2 is a cascade of two identical common-source stages loaded by a resistor, R_{D}.

Figure 2: Cascade of common source stages.

- Assume that each transistor operates in saturation and SI and determine the $A_{\text {IIP3 }}$ of the cascade.

