Low-power radio design for the IoT
 Exercise 3 (18.03.2021)

Christian Enz
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Problem 1 Nonlinearity and Time Variance

A list of input-output equations for several systems are given below. The instantaneous input is $x(t)$ and the instantaneous output is $y(t)$.
a) $2 y(t)=5 x(t)+7$
b) $2 y(t)=5 x^{2}(t)+x(t)$
c) $2 t y(t)=5 x(t)+7$
d) $\frac{d y(t)}{d t}+2 y(t)=3 x(t)$
e) $\frac{d^{2} y(t)}{d t^{2}}+3 y(t) \frac{d y(t)}{d t}=5 x(t)$

- Classify each system as time invariant or time variant, linear or nonlinear and with memory or memoryless.

Problem 2 Third-Order Input Intercept Point

Consider the scenario shown in Fig. 1, where $\omega_{3}-\omega_{2}=\omega_{2}-\omega_{1}$ and the band-pass filter (BPF) provides an attenuation of 17 dB at ω_{2} and 37 dB at ω_{3}.

Figure 1: Cascade of BPF and amplifier.

- Compute the $A_{I I P 3}$ of the amplifier such that the intermodulation product falling at ω_{1} is 20 dB below the desired signal.
- Suppose an amplifier with a voltage gain of 10 dB and $A_{I I P 3}=3.979 \mathrm{dBm}$ precedes the band-pass filter. Calculate the $A_{I I P 3}$ of the overall chain (neglect the second order nonlinearities and the nonlinearity of the BPF).

Problem 3 Cascade of Nonlinear Stages

The circuit in Fig. 2 is a cascade of two identical common-source stages loaded by a resistor, R_{D}.

Figure 2: Cascade of common source stages.

- Assume that each transistor operates in saturation and SI and determine the $A_{\text {IIP3 }}$ of the cascade.

Solutions to Exercise 3 (18.03.2021)

Problem 1 Nonlinearity and Time Variance

- Classify each system as time invariant or time variant, linear or nonlinear and memoryless.
a) $2 y(t)=5 x(t)+7$: time invariant, nonlinear and memoryless
b) $2 y(t)=5 x^{2}(t)+x(t)$: time invariant, nonlinear and memoryless
c) $2 t y(t)=5 x(t)+7$: time variant, nonlinear and memoryless
d) $\frac{d y(t)}{d t}+2 y(t)=3 x(t)$:time invariant, linear and with memory
e) $\frac{d^{2} y(t)}{d t^{2}}+3 y(t) \frac{d y(t)}{d t}=5 x(t)$: time invariant, non linear and with memory

Problem 2 Third-Order Input Intercept Point

- Compute the $A_{I I P 3}$ of the amplifier such that the intermodulation product falling at ω_{1} is 20 dB below the desired signal.

At the output of the BPF we have

$$
\begin{align*}
& -2 \mathrm{~dB}=10^{-0.1}=0.794 \rightarrow A_{\text {sig }}=0.1 \mathrm{mV} \cdot 0.7943=79.43 \mu \mathrm{~V} \\
& -17 \mathrm{~dB}=10^{-0.85}=0.1413 \rightarrow A_{2}=10 \mathrm{mV} \cdot 0.1413=1.413 \mathrm{mV} \tag{1}\\
& -37 \mathrm{~dB}=10^{-1.85}=0.0141 \rightarrow A_{3}=10 \mathrm{mV} \cdot 0.0141=0.141 \mathrm{mV}
\end{align*}
$$

At the output of the amplifier, the problem imposes to have the following condition

$$
\begin{align*}
& 20 \log \left|\alpha_{1} \cdot A_{\text {sig }}\right|-20 \mathrm{~dB}=20 \log \left|\frac{3}{4} \alpha_{3} \cdot A_{2}^{2} A_{3}\right| \tag{2}\\
& \rightarrow\left|\alpha_{1} \cdot 79.43 \mu \mathrm{~V}\right|=\left|\frac{30}{4} \alpha_{3} \cdot(1.413 \mathrm{mV})^{2} \cdot 0.141 \mathrm{mV}\right|
\end{align*}
$$

From the latter, we can compute the $A_{I I P 3}$ as

$$
\begin{equation*}
A_{I I P 3}=\sqrt{\frac{4}{3} \frac{\left|\alpha_{1}\right|}{\left|\alpha_{3}\right|}}=\sqrt{\frac{4}{3} \cdot \frac{30}{4} \cdot \frac{(1.413 \mathrm{mV})^{2} \cdot 0.141 \mathrm{mV}}{79.43 \mu \mathrm{~V}}}=5.95 \mathrm{mV}=10 \log \left(\frac{\frac{(5.95 \mathrm{mV})^{2}}{2.50 \Omega}}{1 \mathrm{mV}}\right)=-34.5 \mathrm{dBm} \tag{3}
\end{equation*}
$$

- Suppose an amplifier with a voltage gain of 10 dB and $A_{I I P 3}=500 \mathrm{mV}$ precedes the band-pass filter. Calculate the $A_{I I P 3}$ of the overall chain (neglect the second order nonlinearities and the nonlinearity of the BPF).

Only considering the first and third order terms, the output of the first amplifier, $y_{1}(t)$, can be written as

$$
\begin{equation*}
y_{1}(t)=\alpha_{1} x(t)+\alpha_{3} x^{3}(t) \tag{4}
\end{equation*}
$$

In the same way, the output of the second amplifier, $y_{2}(t)$, can be written as

$$
\begin{equation*}
y_{2}(t)=\beta_{1} y_{1}(t)+\beta_{3} y_{1}^{3}(t) \tag{5}
\end{equation*}
$$

If we replace Equation (4) into Equation (5), we then obtain

$$
\begin{equation*}
y_{2}(t)=\beta_{1}\left(\alpha_{1} x(t)+\alpha_{3} x^{3}(t)\right)+\beta_{3}\left(\alpha_{1} x(t)+\alpha_{3} x^{3}(t)\right)^{3}(t) . \tag{6}
\end{equation*}
$$

If we limit the expression for $y_{2}(t)$ to the first and third order terms we have

$$
\begin{equation*}
y_{2}(t)=\alpha_{1} \beta_{1} x(t)+\left(\alpha_{3} \beta_{1}+\alpha_{1}^{3} \beta_{3}\right) x^{3}(t) \tag{7}
\end{equation*}
$$

As seen in the slides, this leads to the following formula for the cascaded stages

$$
\begin{equation*}
\frac{1}{I I P 3_{t o t}^{2}} \approx \frac{1}{I I P 3_{1}^{2}}+\frac{\alpha_{1}^{2}}{I I P 3_{2}^{2}} \tag{8}
\end{equation*}
$$

Once evaluated the latter results into

$$
\begin{equation*}
\frac{1}{I I P 3_{t o t}^{2}} \approx \frac{1}{(500 \mathrm{mV})^{2}}+\frac{10}{(5.95 \mathrm{mV})^{2}} \rightarrow I I P 3_{t o t}^{2}=1.881 \mathrm{mV} \tag{9}
\end{equation*}
$$

Problem 3 Cascade of Nonlinear Stages

- Assume that each transistor operates in saturation and SI and determine the $A_{I I P 3}$ of the cascade.

For the MOS transistor biased in saturation and SI we have

$$
\begin{equation*}
I_{D}=\frac{\beta}{2 n} \cdot\left(V_{G}-V_{T 0}-n \cdot V_{S}\right)^{2}, \tag{10}
\end{equation*}
$$

where V_{S} is equal to zero, since the source of both transistors is connected to the bulk and to the ground. Then, by analyzing the circuit we obtain

$$
\begin{equation*}
V_{\text {out }}=V_{D D}-R_{D} \cdot \frac{\beta}{2 n} \cdot\left(V_{x}-V_{T 0}\right)^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{x}=V_{D D}-R_{D} \cdot \frac{\beta}{2 n} \cdot\left(V_{i n}-V_{T 0}\right)^{2} \tag{12}
\end{equation*}
$$

where V_{x} is the voltage at the gate of M_{2} and at the drain of M_{1}. By replacing Equation (12) into Equation (11), we obtain

$$
\begin{equation*}
V_{o u t}=V_{D D}-R_{D} \cdot \frac{\beta}{2 n} \cdot\left[V_{D D}-R_{D} \cdot \frac{\beta}{2 n} \cdot\left(V_{i n}-V_{T 0}\right)^{2}-V_{T 0}\right]^{2} \tag{13}
\end{equation*}
$$

After some manipulations, this expression results into

$$
\begin{equation*}
V_{o u t}=V_{D D}-R_{D} \cdot \frac{\beta}{2 n} \cdot\left[\left(V_{D D}-V_{T 0}\right)^{2}+R_{D}^{2} \cdot\left(\frac{\beta}{2 n}\right)^{2} \cdot\left(V_{i n}-V_{T 0}\right)^{4}-2 R_{D} \cdot\left(\frac{\beta}{2 n}\right) \cdot\left(V_{D D}-V_{T 0}\right) \cdot\left(V_{\text {in }}-V_{T 0}\right)^{2}\right] \tag{14}
\end{equation*}
$$

From Equation (14) is possible to extract the first order terms of Vin, leading to

$$
\begin{equation*}
\left[4\left(V_{D D}-V_{T 0}\right) \cdot\left(\frac{\beta}{2 n}\right) R_{D} V_{T 0}-4\left(\frac{\beta}{2 n}\right)^{2} R_{D}^{2} V_{T 0}^{3}\right] \cdot V_{i n} \tag{15}
\end{equation*}
$$

On the other hand, the third order term of $V_{i n}$ is equal to

$$
\begin{equation*}
\left[-4\left(\frac{\beta}{2 n}\right)^{2} R_{D}^{2} V_{T 0}\right] \cdot V_{i n}^{3} \tag{16}
\end{equation*}
$$

Finally, the $A_{I I P 3}$ can be expressed as

$$
\begin{equation*}
A_{I I P 3}=\sqrt{\frac{4}{3} \frac{\left|\alpha_{1}\right|}{\left|\alpha_{3}\right|}}=\sqrt{\frac{4}{3} \cdot \frac{4\left(V_{D D}-V_{T 0}\right) \cdot\left(\frac{\beta}{2 n}\right) R_{D} V_{T 0}-4\left(\frac{\beta}{2 n}\right)^{2} R_{D}^{2} V_{T 0}^{3}}{4\left(\frac{\beta}{2 n}\right)^{2} R_{D}^{2} V_{T 0}}} . \tag{17}
\end{equation*}
$$

