Low-power radio design for the IoT Exercise 5 (25.03.2021)

Christian Enz

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Problem 1 Common Source Analysis

The circuit in the Figure below is a single MOSFET Common Source (CS) Amplifier.

Figure 1: Common Source Amplifier.

- Draw the small-signal equivalent circuit of the CS. Consider the bias current source to be ideal. (*Hint*: split the gate capacitance, C_G , into the intrinsic and the extrinsic parts, C_{Gi} and C_{Ge} , and the load capacitance, C_L , into a constant capacitance and a self-loading capacitance per unit width, C_{L0} and C_w , respectively).
- Derive the expression of the transit frequency, ω_t , by using the small signal equivalent circuit.
- Express ω_t in terms of the inversion coefficient, *IC*. (*Hint*: introduce the specific frequency, $\omega_{spec} \triangleq \frac{2\mu U_T}{L^2}$, and neglect the velocity saturation $(\lambda_c = 0)$).
- Derive ω_{tspec} , the transit frequency for IC = 1 and WI.
- Derive the expression for the unity-gain frequency, ω_u . (*Hint*: neglect the output conductance of the transistor $(g_{ds} = 0)$).
- Express ω_u in terms of the normalized gain-bandwidth (GBW) for a squared transistor biased in WI, $\omega_L \triangleq \frac{I_{spec}}{nU_T C_L}$, and the normalized source transconductance, g_{ms} .

Problem 2 Common Source Design

Once the self loading capacitance per unit width is taken into account, the formulas for the I_D and W/L normalized to $\Omega \triangleq \frac{\omega_u}{\omega_L}$ are

$$i_{b} \triangleq \frac{I_{D}}{I_{spec_{\square}}} \cdot \frac{1}{\Omega} = \frac{IC}{g_{ms} - \Theta};$$

$$AR \triangleq \frac{W}{L} \cdot \frac{1}{\Omega} = \frac{1}{g_{ms} - \Theta},$$
(1)

where Θ is equal to $\frac{C_w L}{C_{L0}} \cdot \frac{\omega_u}{\omega_L} = \frac{\omega_u}{\omega_{tspec}}$. Design the CS amplifier, shown in Fig. 1, for the following specifications at room temperature:

$$f_u = 18 \text{ MHz}$$
 $C_{L0} = 60 \text{ fF}$ $V_{DD} = 1.8 \text{ V}$ $L = 40 \text{ nm}$ $C_w = 0.450 \text{ fF/nm},$ (2)

and by assuming the following values for the technology parameters

$$I_{spec_{\Box}} = 950 \,\mathrm{nA}$$
 $n = 1.5 \quad V_{T0} = 455 \,\mathrm{mV}$ $\lambda_c = 0.4875 \quad L_{sat} = 19.5 \,\mathrm{nm}.$ (3)

- Find the IC_{opt} , the value of the inversion coefficient for which the bias current is minimum. Assume no velocity saturation.
- Based on the IC_{opt} , find the values of the bias current, I_q , and the transistor aspect ratio, W/L, to achieve the specified gian-bandwidth, w_u .