Low-power radio design for the IoT Exercise 5 (15.04.2021)

Christian Enz

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Problem 1 Receiver Front-End

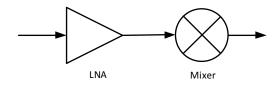


Figure 1: Block diagram of a receiver front-end

The system shown in Fig. 1 consists of a cascade of an LNA followed by a mixer. The system has the following specifications:

- Total Gain, $G_{\text{tot}} \ge 20 \,\text{dB}$
- Total Noise Figure, $NF_{tot} = 4 \, dB$
- Total IIP_3 , $IIP_{3_{tot}} = 5 \,dBm$

1.1 LNA Design

- Design the LNA (calculate the gain) such that its noise figure $NF_{\rm LNA} < 1 \, \rm{dB}$. Calculate its IIP_3 if $IIP_{3_{\rm mixer}} = 20 \, \rm{dBm}$. Assume the noise figure of the mixer $NF_{\rm mixer} = 10 \, \rm{dB}$.
- Design the LNA such that its noise figure $NF_{\text{LNA}} = 3 \text{ dB}$. Calculate the IIP_3 assuming $IIP_{3_{\text{mixer}}} = 20 \text{ dBm}$. Assume the noise figure of the mixer $NF_{\text{mixer}} = 10 \text{ dB}$.
- Comment on the results.

1.2 Mixer Design

- Assuming that the mixer stage contributes half of the total gain, compute the Noise Figure of the mixer such that the Noise Figure of the LNA is less than 1 dB.
- Assuming that the mixer stage contributes one-fourth of the total gain, compute the Noise Figure of the mixer such that the Noise Figure of the LNA is less than 1 dB.
- Comment on the results.