Low-power radio design for the IoT
 Exercise 10 (27.05.2021)

Christian Enz
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Problem 1 Pierce Oscillator

Figure 1: Pierce oscillator.

Design the Pierce oscillator shown in Fig. 1 for the following specifications:

$$
f_{0}=2.4 \mathrm{GHz}, \quad C_{2}=1 \mathrm{pF}, \quad C_{3}=1 \mathrm{pF}, \quad Q_{\mathrm{L}}=10, \quad \mathcal{L}(\Delta \omega=1 \mathrm{MHz})=-112.37 \mathrm{dBc} \cdot \mathrm{~Hz}^{-1}
$$

- Find the inductance value (choose C_{1} to minimize the power consumption).
- Find the critical transconductance value.
- Find the critical current value assuming the transistor is biased in weak inversion (take $n=1.3$).
- Find the output oscillation amplitude $\hat{V}_{\text {out }}$ for the given phase noise specification. Assume that the transistor is biased in weak inversion and that the noise excess factor γ is equal to 1.2.
If you haven't followed the course on phase noise, assume $\hat{V}_{\text {out }}=100 \mathrm{mV}$ for the rest of the exercise.
- Find the bias current I_{b} for the specified amplitude assuming the transistor is biased in weak inversion (take $n=1.3$).

Problem 2 Complementary cross-coupled oscillator

2.1 Oscillator analysis

Fig. 2 shows a complementary cross-coupled oscillator. In the first part of the problem we will derive expressions for quantities that will be used in the second part. All transistors are biased in weak inversion and have transconductances equal to G_{m}. Quality factor of the inductor is Q_{L}.

- Draw the small signal equivalent circuit.

Figure 2: Complementary cross-coupled oscillator

- Derive the expression for the impedance seen from the inductor Z_{c}, and find $R_{c}=-\Re Z_{c}$ and $X_{c}=-\Im Z_{c}$.
- Derive the expression for the oscillation frequency ω_{0}.
- Derive the expression for the $G_{\text {mcrit }}$.

2.2 Oscillator design

The derived expressions will now be used to design the oscillator with the following specifications:

$$
f_{0}=2.4 \mathrm{GHz}, \quad C=0.5 \mathrm{pF}, \quad Q_{\mathrm{L}}=10, \quad V_{\text {out }}=325 \mathrm{mV}, \quad U_{\mathrm{T}}=25 \mathrm{mV}, \quad n=1.3
$$

Again, assume that all transistors are biased in weak inversion.

- Find the inductance value for the given oscillation frequency.
- Find the value of $G_{\text {mcrit }}$.
- Calculate the bias current needed to achieve the desired amplitude of the output voltage $V_{\text {out }}$. You can assume here that the condition $V_{\text {out }} \gg 2 n U_{\mathrm{T}}$ is fulfilled.

Solutions to Exercise 10 (27.05.2021)

Problem 1 Pierce Oscillator

Design the Pierce oscillator shown in Fig. 1 for the following specifications:

$$
f_{0}=2.4 \mathrm{GHz}, \quad C_{2}=1 \mathrm{pF}, \quad C_{3}=1 \mathrm{pF}, \quad Q_{\mathrm{L}}=10, \quad \mathcal{L}(\Delta \omega=1 \mathrm{MHz})=-112.37 \mathrm{dBc} \cdot \mathrm{~Hz}^{-1}
$$

- Find the inductance value.

To find the inductance value we first need to know the value of C_{1}. We know that $G_{\text {mcrit }}$ and hence the power consumption are minimum for $C_{1}=C_{2}$, hence $C_{1}=1 \mathrm{pF}$. The inductance is approximately given by

$$
\begin{equation*}
L \cong \frac{1}{\omega_{0}^{2} \cdot\left(C_{3}+C_{12}\right)} \tag{1}
\end{equation*}
$$

where $\omega_{0}=2 \pi f_{0}$ and $C_{12}=C_{1} \cdot C_{2} /\left(C_{1}+C_{2}\right)=0.5 \mathrm{pF}$. This leads to $L=2.932 \mathrm{nH}$.

- Find the critical transconductance value.

The critical transconductance is given by

$$
\begin{equation*}
G_{\mathrm{mcrit}} \cong \frac{\omega_{0}}{Q_{\mathrm{L}}} \cdot\left(C_{1}+C_{2}\right) \cdot\left(1+\frac{C_{3}}{C_{12}}\right)=9.048 \mathrm{mS} \tag{2}
\end{equation*}
$$

- Find the critical current value assuming the transistor is biased in weak inversion (take $n=1.3$).

The critical current assuming the transistor is biased in weak inversion is then given by

$$
\begin{equation*}
I_{\text {crit }}=G_{\mathrm{mcrit}} \cdot n \cdot U_{\mathrm{T}}=304.345 \mu \mathrm{~A}, \tag{3}
\end{equation*}
$$

where $n=1.3$ is the slope factor and $U_{\mathrm{T}} \triangleq k T / q=25 \mathrm{mV}$ is the thermodynamic voltage.

- Find the output oscillation amplitude $\hat{V}_{\text {out }}$ for the given phase noise specification. Assume that the transistor is biased in weak inversion and that the noise excess factor γ is equal to 1.2.

The phase noise at 1 MHz offset frequency is given by:

$$
\begin{equation*}
\mathcal{L}_{\Delta \omega=1 \mathrm{MHz}}=\frac{S_{V_{n}}}{\hat{V}_{\text {out }}^{2}}=\frac{k T \cdot r \cdot(1+\gamma)}{\hat{V}_{\text {out }}^{2}}\left(\frac{C_{1}}{C_{1}+C_{2}}\right)^{2} \cdot\left(\frac{\omega_{0}}{\Delta \omega}\right)^{2} \tag{4}
\end{equation*}
$$

Therefore, the output amplitude can be derived:

$$
\begin{equation*}
\hat{V}_{\text {out }}=\sqrt{\frac{k T \cdot(1+\gamma)}{\mathcal{L}_{\Delta \omega=1 \mathrm{MHz}} \cdot Q_{\mathrm{L}} \cdot \omega_{0} \cdot\left(C_{3}+C_{12}\right)}}\left(\frac{C_{1}}{C_{1}+C_{2}}\right) \cdot\left(\frac{\omega_{0}}{\Delta \omega}\right) \tag{5}
\end{equation*}
$$

In WI, $\hat{V}_{\text {out }}=100.058 \mathrm{mV}$.

- Find the bias current I_{b}, assuming the transistor is biased in weak inversion (take $n=1.3$).

We first need to calculate the normalized amplitude $x \triangleq \hat{V}_{\text {out }} /\left(n \cdot U_{\mathrm{T}}\right)=2.975$. The bias current is then given by

$$
\begin{equation*}
I_{\mathrm{b}}=I_{\mathrm{crit}} \cdot \frac{x \cdot I_{\mathrm{B} 0}(x)}{2 I_{\mathrm{B} 1}(x)} \tag{6}
\end{equation*}
$$

where $I_{\mathrm{B} 0}(x)$ and $I_{\mathrm{B} 1}(x)$ are the modified Bessel functions of the first kind of order 0 and 1 respectively. The ratio $\chi \triangleq x \cdot I_{\mathrm{B} 0}(x) /\left(2 I_{\mathrm{B} 1}(x)\right)$ can be found from the abacus or calculated as $\chi=1.84$, resulting in a bias current of $I_{\mathrm{b}}=559.995 \mu \mathrm{~A}$.

Problem 2 Complementary cross-coupled oscillator

2.1 Oscillator analysis

Fig. 2 shows a complementary cross-coupled oscillator. In the first part of the problem we will derive expressions for quantities that will be used in the second part. All transistors are biased in weak inversion and have transconductances equal to G_{m}. Quality factor of the inductor is Q_{L}.

- Draw the small signal equivalent circuit.

Figure 1: Complementary cross-coupled oscillator

- Derive the expression for the impedance seen from the inductor Z_{c}, and find $R_{c}=-\Re Z_{c}$ and $X_{c}=-\Im Z_{c}$.

As can be seen from the Fig. 1 the complementary oscillator is practically equivalent to the NMOS one. The only difference is the total transconductance that is now equal to the sum of the transconductances of the NMOS and the PMOS transistors. It follows:

$$
\begin{align*}
Z_{c} & =\frac{1}{-G_{\mathrm{m}+j \omega C}} \tag{7}\\
R_{c} & =\frac{G_{\mathrm{m}}}{G_{\mathrm{m}}^{2}+\omega^{2} C^{2}} \tag{8}\\
X_{c} & =\frac{j \omega C}{G_{\mathrm{m}}^{2}+\omega^{2} C^{2}} \tag{9}
\end{align*}
$$

- Derive the expression for the G_{mcrit}.

To find the value of critical transconductance we can solve the equation:

$$
\begin{gather*}
\frac{X_{c}\left(\omega_{0}, G_{\text {mcrit }}\right)}{R_{c}\left(\omega_{0}, G_{\text {mcrit }}\right)}=Q_{\mathrm{L}} \tag{10}\\
G_{\text {mcrit }}=\frac{\omega_{0} C}{Q_{\mathrm{L}}} \tag{11}
\end{gather*}
$$

- Derive the expression for the oscillation frequency ω_{0}.

Oscillation frequency can be obtained from the equation:

$$
\begin{align*}
& X_{c}\left(\omega_{0}, G_{\mathrm{mcrit}}\right)=\omega_{0} L, \tag{12}\\
& \omega_{0}=\frac{1}{\sqrt{L C\left(1+\frac{1}{Q_{L}^{2}}\right)}} \tag{13}
\end{align*}
$$

2.2 Oscillator design

The derived expressions will now be used to design the oscillator with the following specifications:

$$
f_{0}=2.4 \mathrm{GHz}, \quad C=0.5 \mathrm{pF}, \quad Q_{\mathrm{L}}=10, \quad V_{\text {out }}=325 \mathrm{mV}, \quad U_{\mathrm{T}}=25 \mathrm{mV}, \quad n=1.3
$$

Again, assume that all transistors are biased in weak inversion.

- Find the inductance value for the given oscillation frequency.

$$
\begin{equation*}
L=\frac{1}{\omega_{0}^{2} C\left(1+\frac{1}{Q_{L}^{2}}\right)}=8.709 \mathrm{nH} \tag{14}
\end{equation*}
$$

- Find the value of $G_{\text {mcrit }}$.

$$
\begin{equation*}
G_{\mathrm{mcrit}}=\frac{\omega_{0} C}{Q_{\mathrm{L}}}=754 \mu \mathrm{~S} . \tag{15}
\end{equation*}
$$

- Calculate the bias current needed to achieve the desired amplitude of the output voltage $V_{\text {out }}$. You can assume here that the condition $V_{\text {out }} \gg 2 n U_{\mathrm{T}}$ is fulfilled.
For the given amplitude $V_{\text {out }}=325 \mathrm{mV}$ we can calculate:

$$
\begin{equation*}
x=\frac{V_{\text {out }}}{2 n U_{\mathrm{T}}}=5, \tag{16}
\end{equation*}
$$

Due to the high amplitude of the voltage we can write:

$$
\begin{equation*}
\frac{G_{\mathrm{m}(1)}}{G_{\mathrm{m}}}=\frac{a_{1}}{x}=\frac{4}{\pi x}=0.2547 \tag{17}
\end{equation*}
$$

For $G_{\mathrm{m}(1)}=G_{\mathrm{mcrit}}$ we have

$$
\begin{equation*}
I_{\mathrm{b}}=2 n U_{\mathrm{T}} G_{\mathrm{m}}=2 n U_{\mathrm{T}} \frac{\pi x}{4} G_{\mathrm{mcrit}}=192 \mu \mathrm{~A} \tag{18}
\end{equation*}
$$

