
Theory and Methods for Reinforcement Learning (Spring 2020)

Description: This course describes theory and methods for Reinforcement Learning (RL),
which revolves around decision making under uncertainty. The course covers
classic algorithms in RL (Monte-Carlo methods, TD-Learning etc.) as well
as recent algorithms (TRPO, DDPG, SAC etc.) based on the exploration-
exploitation trade-offs. The group project enables the students to familiarize
with the implementation of some of the state-of-the-art RL algorithms.

Learning outcomes: By the end of the course, the students are expected to understand the
core challenges (like the exploration-exploitation tradeoff, sample complexity
etc.) in RL. In particular, students must be able to:

1. Define the key features of RL that distinguishes it from standard ma-
chine learning.

2. Given a relevant application problem, formulate it as an RL problem,
and identify best-suited algorithms to solve it.

3. Implement recently published articles on RL to solve standard control
tasks (e.g., MuJoCo environment).

4. Understand the techniques to address the core challenges in RL.

Prerequisites: Previous coursework in optimization, probability theory, and linear algebra
is required. Familiarity with deep learning and programming in python is
useful.

Language: English

Class Times: Thursdays 10:15-12:00 in CM1113.

Lab & office hours: Thursdays 9:15-10:00 in CM1113.

Instructor: Prof. Volkan Cevher, ELE 233, volkan.cevher@epfl.ch

Credits: 3

Course Website: https://moodle.epfl.ch/course/view.php?id=15887

Resources: We will provide corresponding reading resources during lectures.

Honor Code: The EPFL honor code applies to the course: http://wiki.epfl.ch/

delegues/code.honneur.

Assessment Methods: The students are required to present a lecture and do a group project. The
guidelines on the project are provided separately.
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Course Outline

Lecture 1: Introduction to Reinforcement Learning.
Reading: Chapter 3 of [38]

Lecture 2: Dynamic Programming. (Student Lecture)
Reading: Chapter 4 of [38]

Lecture 3: Monte Carlo Methods. (Student Lecture)
Reading: Chapter 5 of [38]

Lecture 4: Temporal-Difference Learning. (Student Lecture)
Reading: Chapter 6 of [38]

Lecture 5: n-step Bootstrapping. (Student Lecture)
Reading: Chapter 7 of [38]

Lecture 6: Value-based Methods for Deep RL. (Student Lecture)
Reading: [25, 45, 43, 33, 14]

Lecture 7: Policy Gradient Methods for Deep RL I. (Student Lecture)
Reading: Chapter 13 of [38], and papers [39, 19, 34, 35, 36]

Lecture 8: Policy Gradient Methods for Deep RL II. (Student Lecture)
Reading: Chapter 13 of [38], and papers [39, 19, 34, 35, 36]

Lecture 9: Actor-Critic Methods for Deep RL. (Student Lecture)
Reading: [22, 9, 11, 12]

Lecture 10: Model-based RL. (Student Lecture)
Reading: Chapter 8 of [38]

Lecture 11: Deep Model-based RL. (Student Lecture)
Reading: [24, 10, 2]

Lecture 12: Inverse Reinforcement Learning. (Student Lecture)
Reading: [28, 27, 1, 31, 47, 46, 40, 17, 16]

Lecture 13: Robust Reinforcement Learning.
Reading: [29, 41, 23]

For each student lecture, we assign a presenter and two questioners from the enrolled students pool. We
will provide the lecture materials (including source files) to the assigned students. Students could improve
the materials as well.

2



Class Project Guidelines

Group: You may work in groups of up to three people. The expectations for the
project scope will scale with the group size. We also ask for a statement ex-
plaining the role of each group member along with the final report. Only one
person should submit the project documents. Group members will typically
(but not necessarily) get the same grade.

Timeline: Note that the following deadlines are strict:

13 March 11:59 PM Project Proposal

29 May 11:59 PM Final Report

Project Proposal: A brief description of the project (1-2 page) which includes the following:

1. the names of the project team members

2. summary of the project and its importance

3. a reading list and directions to be explored

4. special computational resource requirements or licensing requirements
(e.g., MuJoCo)

Final Report: We expect a 6-8 pages report using the NeurIPS template. Your report
should follow the general format of a scholarly paper in this area. The
following is a suggested structure:

1. The title, and Author(s)

2. Abstract

3. Introduction

4. Background/Related Work

5. Approach

6. Theoretical results (if relevant)

7. Experiment results (if relevant)

8. Conclusion

9. References
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For RL experiments and presentation of results, we expect you to follow the
recommended best practices [13]. Also include the following supplementary
materials:

1. Submit your code (with a detailed README file) as a single project.zip
file, or include a GitHub link in your report. You may use any existing
code, libraries, etc. However, you must cite your sources in your report
and clearly indicate your contributions.

2. For theoretical results, you need to provide detailed proofs.

Failure Event: When the project does not work as expected, you need to carefully justify
the failure. Ensure that you get periodic feedback from us.

Grading: Grade allocation is as follows:

1. Attendance: 1 point

2. Participation as questioner: 1 point

3. Participation as student lecture presenter: 2 points

4. Class project: 2 points

Project ideas: Students are encouraged to come up with their own idea. Below we provide
some sample projects:

1. Attempt to make progress on a fundamental problem in RL:

(a) Safety constraints in RL [3, 7, 18].

(b) Improving the sample-complexity of RL via expert demonstra-
tions [15, 37, 21].

2. Applications of RL – review how RL algorithms have been applied to
a specific domain of interest, and extend it further:

(a) Wireless Communication [6, 8].

(b) Neural Architecture Search [48, 5, 30].

(c) Combinatorial Optimization [4, 20, 26].

3. RL for games – familiarize with the game platform and implement deep
RL algorithms in the game and test the performance:

(a) Starcraft [44, 32].

(b) AlphaZero [42].
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