
Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 2: Dynamic Programming
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2020)

License Information for Reinforcement Learning Slides

I This work is released under a Creative Commons License with the following terms:
I Attribution

I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

I Non-Commercial
I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes – unless they get the licensor’s
permission.

I Share Alike
I The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor’s work.

I Full Text of the License

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 48

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

Outline

I This class:
1. Dymanic programming

I Next class:
1. Monte Carlo Methods

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 48

Recommended reading

I Chapter 4 in S. Sutton, and G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 2018.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 48

Motivation

Motivation
How to optimally act in the environment (MDP)? In this lecture, we study the
iterative approaches to solve the planning problem.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 48

Prediction and Control

Prediction
For a given policy π, estimate

I state value function vπ : S → R
I state-action value function qπ : S ×A → R

Control
Estimate

I optimal state value function v∗ : S → R
I optimal state-action value function q∗ : S ×A → R

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 48

Policies and Value Functions

State-value function for policy π

I value of a state s under a policy π:

vπ(s) := Eπ [Gt | St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣St = s

]
I how good for an agent to be in a particular state, for a given policy.

I the expected return when starting in s and following π thereafter.

I the value of the terminal state, if any, is always zero.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 48

Policies and Value Functions

Action-value function for policy π

I value of taking action a in state s under a policy π:

qπ(s, a) := Eπ [Gt | St = s,At = a] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣St = s,At = a

]
I how good for an agent to execute a particular action in a particular state, for a
given policy.

I expected return starting from s, taking the action a, and thereafter following
policy π

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 48

Richard E. Bellman

Figure: https://en.wikipedia.org

• Major contributions:

I Bellman equation
I Hamilton-Jacobi-Bellman equation
I Bellman-Ford algorithm

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 48

https://en.wikipedia.org/wiki/Richard_E._Bellman

Bellman Equation

Bellman equation for vπ
I relationship between the value of a state and the values of its successor states:

vπ(s) := Eπ [Gt | St = s]
= Eπ [Rt+1 + γGt+1 | St = s]

=
∑
a

π(a | s)
∑
s′

∑
r

p(s′, r | s, a)
[
r + γEπ [Gt+1 | St+1 = s′]

]
=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s′)

]
, ∀s ∈ S

I this is a set of (linear) equations, one for each state

I the value function vπ is the unique solution to its Bellman equation

I state value function = immediate reward + discounted value of successor state

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 48

Bellman Equation

Bellman equation for qπ
The action value function can similarly be decomposed:

qπ(s, a) := Eπ [Gt | St = s,At = a]
= Eπ [Rt+1 + γGt+1 | St = s,At = a]

=
∑
s′,r

p(s′, r | s, a)
∑
a′

π(a′ | s′)
[
r + γEπ [Gt+1 | St+1 = s′, At+1 = a′]

]
=
∑
s′,r

p(s′, r | s, a)
∑
a′

π(a′ | s′)
[
r + γqπ(s′, a′)

]
, ∀s ∈ S, a ∈ A

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 48

Backup Diagram

• Bellman equation for vπ :

vπ(s) = Ea∼π(·|s)Es′,r∼P (·|s,a)
[
r + γvπ(s′)

]

Figure: Backup diagram for vπ

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 48

Backup Diagram

• Bellman equation for qπ :

qπ(s, a) = Es′,r∼P (·|s,a)Ea′∼π(·|s′)
[
r + γqπ(s′, a′)

]

Figure: Backup diagram for qπ

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 48

Example: Gridworld
• Recall the gridworld example:

I random policy: π(a | s) = 0.25, ∀a ∈ A, s ∈ S
I discount rate: γ = 0.9
I vπ(s) = Ea∼π(·|s)Es′,r∼P (·|s,a) [r + γvπ(s′)]
I solve the linear system V π = Rπ + γPπV π , where V πs = vπ(s),
Rπs = Ea∼π(·|s)Es′,r∼P (·|s,a)

[∑
s′
r(s, a, s′)

]
, and

Pπ
s,s′ =

∑
a
π(a | s)P (s′ | s, a).

1 2 3 4 5

1 3.31 8.79 4.43 5.32 1.49

2 1.52 2.99 2.25 1.91 0.55

3 0.05 0.74 0.67 0.36 -0.4

4 -0.97 -0.44 -0.35 -0.59 -1.18

5 -1.86 -1.35 -1.23 -1.42 -1.98

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 48

Optimal Value Fuctions

• Optimal value function measures the best possible goodness of state or state-action
pair under all possible policies.

Definition
I optimal state-value function:

v∗(s) := max
π

vπ(s), ∀s ∈ S.

I optimal action-value function:

q∗(s, a) := max
π

qπ(s, a), ∀s ∈ S, a ∈ A.

• Relationship between q∗ and v∗:

q∗(s, a) = E[Rt+1 + γv∗(St+1) | St = s,At = a].

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 48

Optimal Policy

• Partial order:
π ≥ π′ iff vπ(s) ≥ vπ′ (s), ∀s ∈ S

Theorem ([?])
For any Markov Decision Process

I there exists an optimal policy π∗ that is better than or equal to all other policies,
π∗ ≥ π, ∀π

I all optimal policies achieve the same optimal value function, vπ∗ (s) = v∗(s)

I all optimal policies achieve the same optimal action-value function,
qπ∗ (s, a) = q∗(s, a)

• Optimal policy for a MDP in continuing task is:

I deterministic
I stationary (does not depend on time step)
I not necessarily unique

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 48

Finding an Optimal Policy

• An optimal policy can be found by maximising over q∗(s, a),

π∗(a | s) =
{

1 if a = arg maxa∈A q∗(s, a)
0 otherwise

I there is always a deterministic optimal policy for any MDP

I if we know q∗(s, a), we immediately have the optimal policy

• Assumptions:

I we accurately know the dynamics of the environment

I we have enough computational resources to complete the computation of the
solution (polynomial in number of states)

I the Markov property

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 48

Bellman Optimality Equation

Bellman optimality equation for v∗

I relationship between the optimal value of a state and the optimal values of its
successor states:

v∗(s) = max
a

qπ∗ (s, a)

= max
a
Eπ∗ [Gt | St = s,At = a]

= max
a
Eπ∗ [Rt+1 + γGt+1 | St = s,At = a]

= max
a
E[Rt+1 + γv∗(St+1) | St = s,At = a]

= max
a

∑
s′,r

p(s′, r | s, a)[r + γv∗(s′)]

I value of a state under an optimal policy must equal the expected return for the
best action from that state

I a system of (non-linear) equations, one for each state
I v∗ is the unique solution

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 48

Bellman Optimality Equation

Bellman optimality equation for q∗

The optimal action value function can similarly be decomposed:

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(St+1, a
′) | St = s,At = a]

=
∑
s′,r

p(s′, r | s, a)[r + γmax
a′

q∗(s′, a′)]

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 48

Backup Diagram

• Bellman optimality equation for v∗:

v∗(s) = max
a
Es′,r∼P (·|s,a)

[
r + γv∗(s′)

]

Figure: Backup diagram for v∗

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 48

Backup Diagram

• Bellman optimality equation for q∗:

q∗(s, a) = Es′,r∼P (·|s,a)

[
r + γmax

a′
q∗(s′, a′)

]

Figure: Backup diagram for q∗

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 48

Planning Problem

Assumptions

I we consider finite MDPs (S+,A,R, P, P0, γ) with finite S+, A and R, i.e.,∣∣S+
∣∣ <∞, |A| <∞, and |R| <∞.

I we consider a problem with known dynamics given by a set of probabilities, i.e.,

p(s′, r | s, a) is known ∀s ∈ S, s′ ∈ S+, a ∈ A, r ∈ R

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 48

Policy Evaluation (Prediction)

Prediction
Compute the state-value function vπ for an arbitrary policy π:

vπ(s) =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s′)

]
• By Banach fixed-point theorem, existence and uniqueness of vπ are guaranteed if:

I discounting rate γ < 1 or,
I eventual termination is guaranteed from all states under the policy π.

• System of |S| simultaneous linear equations in |S| unknowns.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 48

Policy Evaluation (Prediction)

Iterative solution
Construct a sequence of approximations {vk}k∈N of vπ where vk : S+ → R.

I initialization: Pick v0 arbitrarily (except that v0(terminal state) = 0).

I update: ∀s ∈ S

vk+1(s) = Eπ [Rt+1 + γvk(St+1) | St = s]

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvk(s′)

]
I vk = vπ is a fixed point for this update rule.

I the sequence {vk}, in general, converges to vπ as k →∞ under the same
conditions that guarantee the existence of vπ .

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 48

Iterative Policy Evaluation (IPE)

Stopping condition

max
s∈S
|vk(s)− vk+1(s)| ≤ θ,

where θ is a small threshold determining the accuracy of the estimation.

Iterative policy evaluation
Input: the policy π to be evaluated
Initialize: an array V (s) = 0, for all s ∈ S+, a small number θ > 0
Repeat:

∆← 0
For each s ∈ S:

v ← V (s)
V (s)←

∑
a
π(a|s)

∑
s′,r

p(s′, r|s, a) [r + γV (s′)]

∆← max(∆, |v − V (s)|)
until ∆ < θ

Output: V ≈ vπ

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 48

Example: 4 × 4 Gridworld

• Environment setup:

I actions A = {up, down, right, left}.

I states S = {1, 2, 3, . . . , 14}.

I rewards r = −1 until the terminal sate is reached

I terminal states are denoted by T which is (0,0) and (4,4), vk(T) = 0 for all k

I actions that would take the agent off the grid leave the state unchanged

I suppose the agent follows the equiprobable random policy (all actions equally
likely)

I γ = 1, π(a|s) = 1/4 for all state s and action a.

I initial v0(s) = 0 for all state s.

T 1 2 3
4 5 6 7
8 9 10 11
12 13 14 T

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 48

IPE: first iteration k = 0

• We have, for all s = 1, . . . , 14:

v1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
(
r + γv0(s′)

)
=

1
4

∑
a

∑
s′

p(s′,−1|s, a)
(
− 1 + 1× v0(s′)

)
= −

1
4

∑
a

∑
s′

p(s′,−1|s, a)

= −1

• Hence

v1 =

0 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 0

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 48

IPE: second iteration k = 1
• We have, for all s = 1, . . . , 14:

v1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
(
r + γv0(s′)

)
=

1
4

∑
a

∑
s′

p(s′,−1|s, a)
(
− 1 + 1× v0(s′)

)
=

1
4

15∑
s′=0

p(s′,−1|s, up)
(
− 1 + v0(s′)

)
+

1
4

15∑
s′=0

p(s′,−1|s, down)
(
− 1 + v0(s′)

)
+

1
4

15∑
s′=0

p(s′,−1|s, left)
(
− 1 + v0(s′)

)
+

1
4

15∑
s′=0

p(s′,−1|s, right)
(
− 1 + v0(s′)

)

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 48

IPE: second iteration k = 1

• If s = 1 then

1. p(s′,−1|1, up) = 0 for all s′ , 1 and hence
1
4
∑15

s′=0 p(s
′,−1|1, up)

(
− 1 + v0(s′)

)
= 1

4p(1,−1|1, up)(−1− 1) = −1/2

2. p(s′,−1|1, down) = 0 for all s′ , 5 and hence
1
4
∑15

s′=0 p(s
′,−1|s, down)

(
− 1 + v0(s′)

)
= 1

4p(5,−1|1, down)(−1− 1) = −1/2

3. p(s′,−1|1, left) = 0 for all s′ , 0 and hence
1
4
∑15

s′=0 p(s
′,−1|s, left)

(
− 1 + v0(s′)

)
= 1

4p(0,−1|1, left)(−1− 0) = −1/4

4. p(s′,−1|1, right) = 0 for all s′ , 3 and hence
1
4
∑15

s′=0 p(s
′,−1|s, right)

(
−1+v0(s′)

)
= 1

4p(3,−1|1, right)(−1−1) = −1/2

• Therefore, v2(1) = −1.75.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 48

IPE: second iteration k = 1

• Similarly,

I v2(4) = v(14) = v(11) = 1.75
I v2(T) = 0
I v2(s) = −2 ∀s ∈ {3, 5, 6, 7, 8, 9, 10, 12, 13}

• Overall

v2 =

0 -1.75 -2 -2
-1.75 -2 -2 -2
-2 -2 -2 -1.75
-2 -2 -1.75 0

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 48

IPE: convergence

Theorem
The IPE iterates given by

vk+1(s) =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvk(s′)

]
converges to the following fixed point equation (as k →∞):

vπ(s) =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s′)

]

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 48

IPE: convergence

Proof.
Let s be such that |vk+1(s)− vπ(s)| = ‖vk+1 − vπ‖∞, then

‖vk+1 − vπ‖∞ = γ

∣∣∣∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[vk(s′)− vπ(s′)]
∣∣∣

≤ γ
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) max
s′
|vk(s′)− vπ(s′)|

= γ
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)‖vk − vπ‖∞

= γ‖vk − vπ‖∞
≤ γn‖v0 − vπ‖∞
→ 0 since γ < 1.

�

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 48

Policy Improvement

Example
Suppose that we know {vπ(s)}s∈S for an arbitrary deterministic policy π.

I for some state s, should we change the policy to deterministically choose an
action a , π(s)?

I would changing to this new policy yield an improvement?

I the answer is given by the policy improvement theorem.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 48

Policy Improvement Theorem

Theorem (Policy improvement theorem)
Let π and π′ be any pair of deterministic policies such that, for all s ∈ S

qπ
(
s, π′(s)

)
≥ vπ(s). (1)

Then the policy π′ must be as good as, or better than, π. That is, it must obtain
greater or equal expected return from all states s ∈ S:

vπ′ (s) ≥ vπ(s). (2)

If (1) is strict inequality at state s′, then (2) is also strict inequality at state s′.

• Considering the previous example, with π′(s) = a , π(s),

I if qπ(s, a) > vπ(s), then the changed policy π′ is indeed better than π.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 48

Policy Improvement Theorem

Proof.
From equation (1), we have:

vπ(s) ≤ qπ(s, π′(s)) (3)
= E[Rt+1 + γvπ(St+1)|St = s,At = π′(s)]
= Eπ′ [Rt+1 + γvπ(St+1)|St = s]
≤ Eπ′ [Rt+1 + γqπ(St+1, π

′(St+1))|St = s] (Applying (1) again)
= Eπ′ [Rt+1 + γE[Rt+2 + γvπ(St+2)|St+1, At+1 = π′(St+1)]|St = s]
= Eπ′ [Rt+1 + γEπ′ [Rt+2 + γvπ(St+2)|St+1]|St = s]

= Eπ′ [Rt+1 + γRt+2 + γ2vπ(St+2)|St = s]. (4)

Apply (4) recursively, we obtain

vπ(s) ≤ Eπ′ [Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . . |St = s]
= Eπ′ [Gt|St = s] = vπ′ (s). (5)

If (3) is a strict inequality, then (5) is also strict. �

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 48

Greedy Policy

Definition (Greedy Policy)
A greedy policy π′ is defined as

π′(s) := arg max
a

qπ(s, a)

= arg max
a

∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]. (6)

Remarks:

1. π′ satisfies the condition of policy improvement theorem by construction.
2. if π′ is as good as, but not better than π, then vπ′ = vπ and by (6),

vπ′ (s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γvπ′ (s′)],

i.e., the fixed point equation is satisfied and consequently, both π and π′ are
optimal policies.

3. the process of making a new policy π′ that improves on an original policy π, by
making it greedy with respect to qπ is called policy improvement.

4. these concepts can easily be extended to stochastic policies.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 48

Example: Gridworld

vk for the Greedy policy
random policy w.r.t. vk

k = 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

T l↔ l↔ l↔
l↔ l↔ l↔ l↔
l↔ l↔ l↔ l↔
l↔ l↔ l↔ T

← Random policy

k = 1

0 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 0

T ← l↔ l↔
↑ l↔ l↔ l↔
l↔ l↔ l↔ ↓
l↔ l↔ → T

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 37/ 48

Example: Gridworld

vk for the Greedy policy
random policy w.r.t. vk

k = 2

0 -1.7 -2 -2
-1.7 -2 -2 -2
-2 -2 -2 -1.7
-2 -2 -1.7 0

T ← ← l↔
↑ ↑← l↔ ↓
↑ l↔ ↓→ ↓
l↔ → → T

k = 3

0 -2.4 -2.9 -3
-2.4 -2.9 -3 -2.9
-2.9 -3 -2.9 -2.4
-3 -2.9 -2.4 0

T ← ← ↓←
↑ ↑← ↓← ↓
↑ ↑→ ↓→ ↓
↑→ → → T

← Optimal

...
...

k =∞

0 -14 -20 -22
-14 -18 -20 -20
-20 -20 -18 -14
-22 -20 -14 0

T ← ← ↓←
↑ ↑← ↓← ↓
↑ ↑→ ↓→ ↓
↑→ → → T

← Optimal

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 48

Policy Iteration

Policy iteration

I start from policy π, compute vπ and use it to yield a better policy π′.
I compute vπ′ and improve π′ to yield an even better π′′.
I repeat this process until the optimal policy is reached.

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ . . .

I−→ π∗
E−→ v∗.

Remarks:

1. E−→ denotes a step of policy evaluation.

2. I−→ denotes a step of policy improvement.
3. Each policy is guaranteed to be a strict improvement over the previous one. If

not, the optimal policy has been reached.
4. A finite MDP means a finite number of policies. Consequently, this process must

converge to the optimal an optimal policy and optimal value function in a finite
number of steps.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 39/ 48

Policy Iteration Algorithm

Policy Iteration

1. Initialization: {V (s)}s∈S ; a small number θ > 0; {π(s)}s∈S .
2. Policy evaluation

Repeat:
∆← 0
For each s ∈ S:

v ← V (s)
V (s)←

∑
s′,r

p(s′, r|s, π(s))[r + γV (s′)]
∆← max(∆, |v − V (s)|)

Until ∆ < θ.
3. Policy improvement

policyStable← true
For each s ∈ S:

oldAction← π(s)
π(s)← arg maxa

∑
s′,r

p(s′, r|s, a)[r + γV (s′)]
If oldAction , π(s), then policyStable← false

If policyStable then stop and return V ≈ v∗ and π ≈ π∗; Else go to 2

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 48

Value Iteration

• Drawback of policy iteration:

I each iteration involves policy evaluation – requiring multiple sweeps through the
state set.

I convergence to vπ happens exactly only in the limit

• Can we truncate the policy evaluation step without losing the convergence
guarantees of policy iteration algorithm?

I yes, use the value iteration algorithm.
I policy evaluation is stopped after only one sweep.
I update rule, for all s ∈ S:

vk+1(s) := max
a
E [Rt+1 + γvk(St+1) | St = s,At = a]

= max
a

∑
s′,r

p(s′, r|s, a)
[
r + γvk(s′)

]
I interpretation: value iteration is obtained by turning the Bellman optimality
equation into an update rule.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 41/ 48

Value Iteration Algorithm

Value Iteration
Initialize: {V (s)}s∈S arbitrarily ; a small number θ > 0 (determines termination).
Repeat:

∆← 0
For each s ∈ S:

v ← V (s)
V (s)← maxa

∑
s′,r

p(s′, r|s, a) [r + γV (s′)]
∆← max(∆, |v − V (s)|)

Until ∆ < θ.
Output: a deterministic policy π ≈ π∗ s.t.

π(s) = arg max
a

∑
s′,r

p(s′, r|s, a)
[
r + γV (s′)

]

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 48

Asynchronous Dynamic Programming

• DP involves operations over the entire state set of the MDP.

I if the state is very large, a single sweep of the state set can be prohibitively
expensive.

I example: Backgammon has over 1020 states.

• Asynchronous DP: in-place iterative DP algorithms.

I not organized in systematic sweeps of state set.
I uses available values of other states.
I does not necessarily mean less computation overall.
I the algorithm does not need to get locked in hopelessly long sweeps before
making progress to improve a policy.

I this allows to intermix computation with real-time interaction – we can run an
iterative DP algorithm at the same time that the agent is experiencing the MDP.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 48

Generalized Policy Iteration

• Two processes:

I policy evaluation – making the value function
consistent with the current policy.

I policy improvement – making the policy greedy
with respect to the current value function.

• Interaction between these processes:

I policy Iteration – these two processes alternate,
each completing before the other begins.

I value Iteration – only a single iteration of
policy evaluation is performed in between each
policy improvement.

I asynchronous DP – these processes are
interleaved at an even finer grain.

• Generalized Policy Iteration (GPI):

I the general idea of letting these processes
interact.

I most RL methods are described as GPI.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 44/ 48

Generalized Policy Iteration
• Convergence of GPI:
I the value function stabilizes only when it is consistent with the current policy.

I the policy stabilizes only when it is greedy with respect to the current value
function.

I thus, both processes stabilize only when a policy has been found that is greedy
with respect to its own evaluation function.

I this implies that the Bellman optimality equation holds, and thus that the policy
and the value function are optimal.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 45/ 48

Efficiency of Dynamic Programming

• Dynamic Programming

I worst case complexity: polynomial time in |S| and |A|.

I curse of dimensionality (inherent difficulty of the problem).

I exponentially better than direct search in policy space (|A||S| complexity).

I for the largest problems, DP better than linear programming methods.

I asynchronous DP requires less memory and computation than synchronous DP
methods.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 46/ 48

Summary

• Policy iteration and value iteration algorithms:

I built upon policy evaluation and policy improvement.
I operate in sweeps through state space.
I no more updating means convergence to values that satisfy the corresponding
Bellman equation.

• Asynchronous DP methods:

I in-place iterative methods.
I update states in arbitrary order.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 47/ 48

References

[1] Martin L Puterman.
Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., 1994.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 48/ 48

	Lecture 02 – Dynamic

