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General considerations
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Units in RF Design
 The power gain is usually given in decibel and defined as

 where 𝐴ௗ஻ is the voltage gain expressed in dB

 Note that the power and voltage gain in dB are equal only if the input and output 
impedances are equal

 The absolute signal levels are often expressed in dBm rather than in watts or volts

 Used for power quantities, the unit dBm refers to “dB’s above 1mW.” To express 
the signal power 𝑃௦௜௚ in dBm, we write
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General considerations
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Voltage on a 50 Ω Resistor for a 0 dBm Signal Level
 An amplifier senses a sinusoidal signal and delivers a power of 0 dBm to a load 

resistance of 50 Ω. Determine the peak-to-peak voltage swing across the load

 Since 0 dBm is equivalent to 1mW, for a sinusoidal signal the rms amplitude is 
given by

 This corresponds to an amplitude of 316.2 mV or a peak-to-peak amplitude of 
632.5 mVpp
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General considerations
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Example of Units in RF
Problem:

A GSM receiver senses a narrowband (modulated) signal having a level of −100dBm. 
If the front-end amplifier provides a voltage gain of 15 dB, calculate the peak-to-peak 
voltage swing at the output of the amplifier

Solution:

Since the amplifier output voltage swing is of interest, we first convert the received 
signal level to voltage

From the previous example, we note that −100dBm is 100 dB below 632 mVpp

Also, 100 dB for voltage quantities is equivalent to 105. Thus, −100 dBm is equivalent 
to 6.32 μVpp

This input level is amplified by 15 dB (≈ 5.62), resulting in an output swing of 35.5μVpp
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General considerations
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dBm Used at Interfaces Without Power Transfer

 dBm can be used at interfaces that do not necessarily entail power transfer

 We mentally attach an ideal voltage buffer to node X and drive a 50-Ω load

 We then say that the signal at node X has a level of 0 dBm, tacitly meaning that if 
this signal were applied to a 50-Ω load, then it would deliver 1 mW
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Nonlinearity and time variance
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 Linear system satisfy the superposition principle

 Any system that does not satisfy this condition is nonlinear

 A system is time invariant if

 A system is time variant if it does not satisfy this condition

 Although intuitively obvious concepts, linear and time invariance may sometimes 
be confused with each other as illustrated in the next slide
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© C. Enz | 2021 Low-power radio design for the IoT (MICRO-461) Slide 7



Nonlinearity and time variance
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Confusion Between Nonlinear and Time Variant Systems

 Is the following system nonlinear or time variant?

 It actually depends on the input:
 If 𝑉௜௡ଵ is the input and 𝑉௜௡ଶ is part of the system then the system is nonlinear and time 

variant
 If 𝑉௜௡ଶ is the input and 𝑉௜௡ଵ is part of the system then the system is linear but time 

variant
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Nonlinearity and time variance
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Example of Time Variance
 Plot the output waveform of the circuit given in the previous slide if
𝑣௜௡ଵ 𝑡 ൌ 𝐴ଵ𝑐𝑜𝑠 𝜔ଵ𝑡 and 𝑣௜௡ଶ 𝑡 ൌ 𝐴ଶ𝑐𝑜𝑠 1.25𝜔ଵ𝑡

 As shown above, 𝑣௢௨௧ tracks 𝑣௜௡ଶ ൐ 0 and is pulled down to zero by 𝑅ଵ if 
𝑣௜௡ଵ ൏ 0

 That is, 𝑣௢௨௧ is equal to the product of 𝑣௜௡ଶ and a square wave toggling between 
0 and 1
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Nonlinearity and time variance
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Linear Time Variant Systems
 A linear system can generate frequency components that are not present in the 

input signal

 This is possible if the system is time variant

 An example is the modulation of a signal by a square wave as shown below

 The output consists of replicas of 𝑉௜௡ଶሺ𝑓ሻ shifted to 𝑛 𝑇ଵ⁄
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Nonlinearity and time variance
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 A system is called memoryless if its output does not depend on the past values of 
its input

 A memoryless linear system is characterized by

 If  depends on time, the system is time variant

 A memoryless nonlinear system can be described by a nonlinear input-output 
function 𝑓

 which can often be approximated with a polynomial

 where 𝛼௝ are in general functions of time if the system is time variant

2 3
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Effects of nonlinearity
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Effects of Nonlinearity
 Distinction between single tone input and multiple (two) tone input
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Effects of nonlinearity
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Single Tone Input – Harmonic Distortion
 If a sinusoid is applied to a nonlinear system, the output exhibits frequency 

components that are integer multiples of the input frequency

 In the case of a 3rd-order memoryless and time invariant system given by 𝑦 𝑡 ൌ
𝛼ଵ𝑥 𝑡 ൅ 𝛼ଶ𝑥ଶ 𝑡 ൅ 𝛼ଷ𝑥ଷሺ𝑡ሻ where 𝛼ଵ is the gain of the linear system, with 
𝑥 𝑡 ൌ 𝐴𝑐𝑜𝑠ሺ𝜔𝑡ሻ, we get

 Even order harmonics result from 𝛼௝ with even 𝑗 and vanish if the system has odd 
symmetry (fully differential)

 Amplitude of the nth harmonic consists of terms proportional to 𝐴௡ and other terms 
proportional to higher powers of 𝐴. Neglecting the latter for small 𝐴 the nth

harmonic can be assumed proportional to 𝐴௡
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Effects of nonlinearity
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 Output still periodic and can therefore be expressed as a Fourier series

 𝑎଴ ൌ 0 since 𝑦ሺ𝜙ሻ signal has no dc component
 𝑏௡ ൌ 0 since 𝑦ሺ𝜙ሻ signal is an even function (i.e. 𝑦 െ𝜙 ൌ 𝑦ሺ𝜙ሻ)
 Only odd-order harmonics since 𝑦ሺ𝜙ሻ is an odd function (i.e. 𝑦 െ𝜙 ൌ െ𝑦ሺ𝜙ሻ)
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Single Tone Input – Harmonic Distortion
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Effects of nonlinearity
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Single Tone Input – Gain Compression
 The coefficient 𝑎ଵ corresponding to the fundamental is given by
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Effects of nonlinearity
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Single Tone Input – Sign of 𝟏and 𝟑

 The nonlinear characteristic can either be expansive (𝛼ଵ · 𝛼ଷ ൐ 0) or 
compressive (𝛼ଵ · 𝛼ଷ ൏ 0)

 Most voltage RF circuits are compressive whereas current mode circuits may be 
expansive
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Effects of nonlinearity
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 In most circuits of interest, the output is a compressive (or saturating) function of 
the input, i.e. the gain approaches zero for sufficiently high input levels. In this 
case coefficient 𝛼ଷ ൏ 0. The gain for the fundamental is therefore a decreasing 
function of 𝐴

 The 1dB compression point is defined as the amplitude for which the gain drops by 
1dB compared to the linear asymptote and can be approximated by
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Single Tone Input – 1-dB Compression Point
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Effects of nonlinearity
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Gain Compression: Effect on FM and AM Waveforms

 FM signal carries no information in its amplitude and hence tolerates compression.

 AM contains information in its amplitude, hence distorted by compression
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Effects of nonlinearity
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 Input signal with two sinusoidal components at two different frequencies 𝜔ଵ and 𝜔ଶ

 The output of a memoryless and time invariant nonlinear system defined by

 The linear term is simply equal to the input multiplied by the gain 𝛼ଵ

 The 2nd-order term is given by
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Two-tone Input – Intermodulation Products 
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Effects of nonlinearity
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 The 3rd-order term is given by

 The 3rd-order term produces fundamentals, 3rd-order harmonics and 3rd-order 
intermodulation (IM) products at 2𝜔ଵ ൅ 𝜔ଶ, 2𝜔ଵ െ 𝜔ଶ, 2𝜔ଶ ൅ 𝜔ଵ and 
2𝜔ଶ െ 𝜔ଵ

 If 𝜔ଵ and 𝜔ଶ are close, IM products at 2𝜔ଵ െ 𝜔ଶ and 2𝜔ଶ െ 𝜔ଵ can be 
troublesome because they are close to 𝜔ଵ and 𝜔ଶ and might fall in the passband
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Two-tones Input – Intermodulation Products
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Effects of nonlinearity
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 Assuming that 𝑥ଵ 𝑡 ൌ 𝐴ଵcos ሺ𝜔ଵ𝑡ሻ is the desired signal and 𝑥ଶ 𝑡 ൌ
𝐴ଶcos ሺ𝜔ଶ𝑡ሻ is an out-of-band interferer

 Looking only at the fundamental component at 𝜔ଵ of the output signal

 The 3rd term shows that the output signal at the desired frequency is affected by 
the interferer amplitude 𝐴ଶ

 In the case the interferer is much stronger than the desired signal (𝐴ଵ ≪ 𝐴ଶ)

 If 𝛼ଷ ൏ 0 (compressive nonlinear characteristic), the amplitude of the desired 
signal can be reduced by the interferer causing desensitization

 A sufficiently large interferer can even reduce the amplitude to zero causing 
blocking (in RF the term blocking signal refers to interferers that can desensitize a 
circuit causing blocking)  
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Two-tones Input – Desensitization and Blocking
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Effects of nonlinearity
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 Consider an odd-order memoryless nonlinear system defined by

 The output signal 𝑦ଵ at 𝜔ଵ for 𝐴ଵ ൏ 2 (no saturation) is given by

 In the case the interferer is much stronger than the desired signal (𝐴ଵ ≪ 𝐴ଶ)

 Blocking occurs for 𝐴ଶ ൌ 2.83 (not consistent with assumption that 𝐴ଵ and 𝐴ଶ ൏ 2)

Desensitization and Blocking – Example
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Effects of nonlinearity
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Example of Gain Compression

Problem:
A 900-MHz GSM transmitter delivers a power of 1 W to the antenna. By how much must 
the second harmonic of the signal be suppressed (filtered) so that it does not desensitize a 
1.8-GHz receiver having P1dB = -25 dBm? Assume the receiver is 1 m away and the 1.8-
GHz signal is attenuated by 10 dB as it propagates across this distance.
Solution:
The output power at 900 MHz is equal to +30 dBm. With an attenuation of 10 dB, the 
second harmonic must not exceed -15 dBm at the transmitter antenna so that it is below 
P1dB of the receiver. Thus, the second harmonic must remain at least 45 dB below the 
fundamental at the TX output. In practice, this interference must be another several dB 
lower to ensure the RX does not compress.
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 Another phenomenon that occurs when a weak signal and a strong interferer pass 
through a nonlinear system is the transfer of modulation (or noise) on the 
amplitude of the interferer to the amplitude of the weak signal

 For example if the amplitude of the interferer is modulated by a sinusoid 
𝐴ଶ 1 ൅𝑚 · cos ሺ𝜔௠𝑡ሻ where 𝑚 is the modulation index (𝑚 ൏ 1), assuming 
𝐴ଵ ≪ 𝐴ଶ, the output is given by

Two-tone Input – Cross Modulation
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Two-tone Input – Cross Modulation
 The desired signal at the output contains amplitude modulation at 𝜔௠ and 2𝜔௠
 A common case of cross modulation arises in amplifiers that must simultaneously 

process many independent signal channels (e.g. in cable television transmitters). 
Nonlinearities in the amplifier corrupt each signal with the amplitude variations in 
other channels
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Example of Cross Modulation
Problem:

Suppose an interferer contains phase modulation but not amplitude modulation. Does 
cross modulation occur in this case?

Solution:

Expressing the input as 𝑥 𝑡 ൌ 𝐴ଵ cos 𝜔ଵ𝑡 ൅ 𝐴ଶcos ሺ𝜔ଶ𝑡 ൅ 𝜙ሻ, where the 
second term represents the interferer (𝐴ଶ is constant but 𝜙 varies with time)

We now note that (1) the second-order term yields components at 𝜔ଵ േ 𝜔ଶ but not 
at 𝜔ଵ; (2) the third-order term expansion gives 3𝛼ଷ𝐴ଵ cos 𝜔ଵ𝑡 𝐴ଶଶ𝑐𝑜𝑠ଶ ሺ𝜔ଶ𝑡 ൅
𝜙ሻ, which results in a component at 𝜔ଵ. Thus,

The desired signal at 𝜔ଵ does not experience cross modulation
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 Discarding the DC and harmonics we obtain the following IM products

 And these fundamental components
 
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Two-tones Input – Intermodulation Products
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 The 3rd-order IM product of two strong out-of-band interferers may fall in the band 
of interest corrupting the desired weak signal

 While operating on the amplitude, this effect degrades the performance even if the 
modulation is on the phase (zero-crossing points are still affected)

 This phenomenon cannot be quantized by harmonic distortion

 It requires another characterization called third-order intercept point (IP3)

Two-tone Input – Intermodulation
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Example of Intermodulation

Problem:

Suppose four Bluetooth users operate in a room as shown in figure below. User 4 is 
in the receive mode and attempts to sense a weak signal transmitted by User 1 at 
2.410 GHz. At the same time, Users 2 and 3 transmit at 2.420 GHz and 2.430 GHz, 
respectively. Explain what happens.

Solution:

Since the frequencies transmitted by Users 1, 2, and 3 happen to be equally spaced, 
the intermodulation in the LNA of RX4 corrupts the desired signal at 2.410 GHz
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Intermodulation: Tones and Modulated Interferers

 In intermodulation analysis:
 approximate the interferers with tones
 calculate the level of intermodulation products at the output             
 mentally convert the intermodulation tones back to modulated components so as to see 

the corruption.
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Example of Gain Compression and Intermodulation
Problem:

A Bluetooth receiver employs a low-noise amplifier having a gain of 10 and an input 
impedance of 50 Ω. The LNA senses a desired signal level of -80 dBm at 2.410 GHz 
and two interferers of equal levels at 2.420 GHz and 2.430 GHz. For simplicity, 
assume the LNA drives a 50-Ω load.

(a) Determine the value of 𝛼ଷ that yields a P1dB of -30 dBm.

(b) If each interferer is 10 dB below P1dB, determine the corruption experienced by 
the desired signal at the LNA output.

Solution:

(a) From previous equation, 𝛼ଷ ൌ 14.5 𝑉ଶ

(b) Each interferer has a level of -40 dBm (= 6.32 mVpp), we determine the amplitude 
of the IM product at 2.410 GHz as:
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Two-tone Input – Third-order Intercept Point
 Allows to characterize nonlinearity by a two-tone test signal with each tone having equal 

amplitude 𝐴ଵ ൌ 𝐴ଶ ൌ 𝐴

 The amplitude of the fundamental and of the 3rd-order IM products at 2𝜔ଵ േ 𝜔ଶ and at 
2𝜔ଶ േ 𝜔ଵ are given by

 If 𝛼ଵ ≫ 9𝛼ଷ 𝐴ଶ 4⁄ , the input level for which the output components at 𝜔ଵ and 𝜔ଶ have 
the same amplitude as those at 2𝜔ଵ െ 𝜔ଶ and 2𝜔ଶ െ 𝜔ଵ is given by
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 3 3 1 3
120log 20log 20log 20log
2 2
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IIP in indBm dBm
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     

Two-tone Input – Third-order Intercept Point
 IP3 can be measured at a single input level chosen well below the -1dB 

compression point, considering that
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where 𝐴௜௡ is the input amplitude, 𝐼𝑀ଵ the amplitude of the fundamental at 𝜔ଵ and 
𝜔ଶ and 𝐼𝑀ଷ the amplitude of the 3rd-order intermodulation products

If all signals levels are expressed in dBm, 
the input 3rd-order intercept point is equal 
to half the difference between the 
magnitudes of the fundamentals and the 
IM3 product at the output plus the 
corresponding input level
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Two-tone Input – Third-order Intercept Point

 Because fundamental and IM3 components are both subject to compression, the 
IP3 is not a directly measureable quantity, but a point obtained by extrapolation of 
measurements made at low amplitude (as shown on the right)
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Comparison Between Single Tone and Two-tone
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Effects of nonlinearity – Summary
 Single signal leading to harmonic 

distortion

 Single + one large interferer leading to 
desensitization

 Single + two large interferers leading 
to intermodulation
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Examples: Differential Pair in Weak Inversion
 The differential output current ∆𝐼௢௨௧ of a MOS differential pair biased in weak 

inversion (or with 𝑛 ൌ 1 for bipolar) is given by
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Examples: Differential Pair in WI – Single and Two-tone
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Examples: Differential Pair in WI – HB Simulations
 These results are confirmed by harmonic balanced (HB) simulations (Aplac)
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Examples: Differential Pair in Strong Inversion
 The differential output current ∆𝐼௢௨௧ of a MOS differential pair biased in strong 

inversion is given by
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Examples: DP in Strong Inversion – HB Simulations
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 In the case of weak inversion, the nonlinearity is a simple exponential function

 Assuming the sinewave is applied to the gate and the transistor is in saturation with 
𝑉ௌ ൌ 0, we have

 The output current can then be normalized to the quiescent value (value for 𝐴 ൌ 0)

 The Fourier series of 𝑦ሺ𝑡ሻ is then given by

 where I௡ሺ𝑥ሻ are the modified Bessel function of the 1st kind. The harmonics can be 
calculated and compared to the approximation obtained from the Taylor series
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Examples: MOST in Weak Inversion
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Examples: MOST in Weak Inversion – Single Tone
 Since the characteristic is expanding instead of compressing, the −1dB 

compression point becomes a +1dB expansion point
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Examples: MOST in Weak Inversion – Two-tone
 The two-tone characteristics are plotted below and compared to the single tone
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Examples: MOST in Weak Inversion – HB Simulations
 These results are confirmed by harmonic balanced (HB) simulations (Aplac)
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 In the case of strong inversion and assuming a long channel and constant mobility, 
the nonlinearity is a simple quadratic function. Therefore there is no 3rd-order term 
and hence the IP3 is infinite!

 A more realistic model accounting for mobility reduction due to the vertical field is 
given by

 For 𝑉ௌ ൌ 0 it can be written in simple normalized form as

 Adding the sine wave at the gate it becomes
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Examples: MOST in Strong Inversion
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where parameter  is typically 0.1 1/V
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Examples: MOST in Strong Inversion
 The current can be rewritten as 𝑖ௗ 𝑡 ൌ 𝑖௤ · 𝑓ሺ𝑥ሻ, where 𝑖௤ is the normalized 

bias current
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 The nonlinear behavior is then captured by the single function 𝑓ሺ𝑥ሻ which can be 
developed in a Taylor series as

 Usually 𝜃′ ≪ 1 and the coefficients can be simplified as
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Examples: MOST in Strong Inversion
 The IIP3 and -1dB points are then given by

© C. Enz | 2021 Low-power radio design for the IoT (MICRO-461) Slide 49

60

50

40

30

20

10

0

x I
IP

3 
[d

B]

0.1 1 10 100
(VGq-VT0)/(nUT)

=0.01 1/V
=0.03 1/V

=0.1 1/V
=0.3 1/V

4ꞏ(VGq–VT0)/(6ꞏ(nUT)2ꞏ)

VS=0 V
60

50

40

30

20

10

0

x -
1d

B 
[d

B]

0.1 1 10 100
(VGq-VT0)/(nUT)

=0.03 1/V
=0.01 1/V

=0.1 1/V
=0.3 1/V

AIIP3ꞏ(1-10-0.05)

VS=0 V



Effects of nonlinearity

ICLAB

2
3

3
8 4
3 3
gt gtIIP

IIP
T

Ax
nU  

  

v v

3 3 2

2

2

1
gt

gt gt



 




   

v

v v

Examples: MOST in Strong Inversion – HB Simulations
 HB simulations (Aplac) for Θ ൌ 0.1 1/𝑉 for ideal MOST in strong inversion
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Examples: Continuous Model of MOST– HB Simulations
 HB simulations (Aplac) for Θ ൌ 0.1 1/𝑉 for ideal MOST from weak to strong 

inversion
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Examples: Continuous Model of MOST– HB Simulations
 HB simulations (Aplac) for Θ ൌ 0.1 1/𝑉 for ideal MOST from weak to strong 

inversion
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Examples: Compact Model of MOST– HB Simulations
 Simulations with complete EKV v2.6 model for a generic 0.18µm CMOS process
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Outline
 General considerations

 Nonlinearity and time variance

 Effects of nonlinearity
 Single tone input
 Harmonic distortion
 Gain compression

 Two-tone input 
 Desensitization and blocking
 Cross modulation
 Intermodulation
 Third-order Intercept Point

 Cascade of nonlinear stages
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 The overall IIP3 is then given by

 In worst case the above expression reduces to

 As the 1st-stage gain 𝛼ଵ increases, the overall IIP3 decreases
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Cascade of Nonlinear Stages
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Considering only the 1st- and 3rd-order terms
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Cascade of Nonlinear Stages

 RF amplifiers are usually narrow-band and therefore the components at 2𝜔ଵ, 
2𝜔ଶ and 𝜔ଶ െ 𝜔ଵ are filtered and hence the bottom components can be 
neglected
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 Considering only the 1st- and 3rd-order terms, we have

 Assuming that the 2nd harmonics and IM2 are filtered before the 2nd stage, the 2nd

term in front of the 3rd-order term can usually be neglected, resulting in considering 
only the IM3 of the 1st and 2nd stage

 The IIP3 for two stages is then given by

 Finally the general relation for cascaded stages under the above assumptions is 
given by
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Cascade of Nonlinear Stages
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