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Introduction

 Reduction of off-chip components translates into a reduction of system cost

 Modeling issues of off-chip inductors

 The bond wires and package pins connecting chip to outside world may 
experience significant coupling
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Basic Planar Inductor Structure

 Has mutual coupling between every two turns and larger inductance than straight wire

 Spiral is implemented on top metal layer to minimize parasitic resistance and 
capacitance

 Inductance of an 𝑁-turn planar spiral structure inductor has 𝑁 𝑁 ൅ 1 2⁄ terms

 Factors that limit the growth rate of an inductance of spiral inductor as function of 𝑁:
 Due to planar geometry the inner turns have smaller size and exhibit smaller inductance.
 The mutual coupling factor is about 0.7 for adjacent turns hence contributing to lower 

inductance.
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Geometry of Inductor Effects Inductance
 A two dimensional square spiral 

inductor  is fully specified  by following 
four quantities:
 Outer dimension, 𝐷௢௨௧
 Line width, 𝑊
 Line spacing, 𝑆
 Number of turns, 𝑁
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Various dimensions of a spiral inductor 
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Effect of Doubling Line Width of Inductor 

 Doubling the width inevitably decreases the diameter of  inner turn, thus lowering 
their inductance

 The spacing between the legs reduces, hence their mutual inductance also 
decrease
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Magnetic Coupling Factor Plot 

 Coupling factor between 2 straight metal lines as a function of their normalized 
spacing 𝑆 𝑊⁄

 Obtained from electromagnetic field simulations
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Inductor Structures Encountered in RFIC Design

 Various inductor geometries shown above are result of improving the trade-offs in 
inductor design, specifically those between:
 The quality factor and the capacitance
 The inductance and the dimensions

 Note that these various inductor geometries provide additional degrees of freedom 
but also complicate the modeling task
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Inductance Equations
 Closed form inductance equations can be found based on  
 Curve fitting methods
 Physical properties of inductors

 Various expressions have been reported in literature [1,2,3]. For example, an 
empirical formula that has less than 10% error for inductors in the range of 5 to 50 
nH is given in [1] and can be reduced to the following form for a square spiral

 Where 𝐴௠ is the metal area (the shaded area) and 𝐴௧௢௧ ≅ 𝐷௢௨௧ଶ is the total 
inductor area

 All units are metric
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Parasitic Capacitance of Integrated Inductors

 Planar spiral inductor suffers from parasitic capacitance because the metal lines of 
the inductor exhibit parallel plate capacitance and adjacent turns bear fring
capacitance
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Loss Mechanisms: Metal Resistance

 Suppose the metal line forming an inductor exhibits a series resistance, 𝑅ௌ
 The 𝑄 may be defined as the ratio of the desirable impedance, 𝜔଴𝐿ଵ, and the 

undesirable impedance, 𝑅ௌ:
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 For example, a 5-nH inductor operating at 5 GHz with an 𝑅ௌ of 15.7Ω has a Q of 
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Loss Mechanisms – Skin Effect

 The skin depth 𝛿 is given by
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Skin Effect – Current Crowding Effect

 For 𝑓 ൒ 𝑓௖௥௜௧, the magnetic field produced by adjacent turn induces eddy current, 
causing unequal distribution of current across the conductor width, hence altering 
the effective resistance of the turn

 For 𝑓 ൒ 𝑓௖௥௜௧, the effective resistance 𝑅௘௙௙ therefore increases according to
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 Where 𝑅◻ represents the dc sheet resistance of the metal 
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Capacitive Coupling to Substrate

 Voltage at each point of the spiral rise and fall with time causing displacement 
current flow between this capacitance and substrate

 This current causes loss and reduces the Q of the inductor
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Substrate loss due to capacitive coupling
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Magnetic Coupling to Substrate

 The time varying inductor current generates eddy current in the substrate

 Lenz's law states that this current flows in the opposite direction

 The induction of eddy currents in the substrate can be viewed as transformer 
coupling
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Modeling Loss by Series or Parallel Resistor

 A constant series resistance 𝑅ௌ model inductor loss for limited range of 
frequencies

 A constant parallel resistance 𝑅௣ model inductor loss for narrow range of 
frequencies

 Note that the behavior of 𝑄 of inductor predicted by above two models has 
suggested opposite trends of 𝑄 with frequency
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Modeling Loss by Both Series and Parallel Resistors

 The overall Q of the inductor is then given by
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Modeling loss by both parallel 
and series resistances Resulting behavior of Q
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Symmetric Inductor

 Differential circuits can  employ a single symmetric inductor instead of two 
asymmetric inductors

 It has two advantages:
 Save area
 Differential geometry also exhibit higher 𝑄
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Mirror/Step Symmetry of Single Ended Inductor 

 Lower 𝑄  Higher 𝑄
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Inductors with Ground Shield

 This structure allows the displacement current to flow through the low resistance 
path to ground to  avoid electrical loss through substrate

 Eddy currents through a continuous shield drastically reduce inductance and 𝑄, so 
a “patterned” shield is used

 This shield reduces the effect of capacitive coupling to substrate

 Eddy currents of magnetic coupling still flows through substrate
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Stacked Inductors

 Similarly, 𝑁 stacked spiral inductor operating in series raises total  inductance by a 
factor of  𝑁ଶ
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Transformers
Useful function of transformer in RF Design:

 Impedance matching

 Feedback and feedforward with positive and negative polarity

 Single ended to differential conversion and vice-verse.

 AC coupling between stages
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Characteristics of Well-designed Transformers
 Low series resistance in primary and secondary windings

 High magnetic coupling between primary and secondary windings

 Low capacitive coupling between primary and secondary windings

 Low parasitic capacitance to the substrate
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Transformer Structures

 Segments AB and CD are mutually coupled inductors

 Primary and secondary are identical so this is 1:1 transformer
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Transformer derived from a symmetric inductor
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Simple Transformer Model and its Transfer Function

 The transformer action gives
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Simple Transformer Model and its Transfer Function
 Replacing 𝐼ଶ in above equation and simplifying the result, we obtain 
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Stacked Transformers

 Higher magnetic coupling

 Unlike planar structures, primary and secondary can be identical and symmetrical

 Overall area is less than planar structure

 Larger capacitive coupling compared to planar structure
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Varactors
 Varactor is a voltage-dependent capacitor

 Two important attributes of varactor design become critical in oscillator design
 The capacitance range i.e. ratio of maximum to minimum capacitance that varactor can 

provide
 The quality factor of the varactor

© C. Enz | 2021 Low-power radio design for the IoT Slide 30



Varactors

ICLAB

PN Junction Varactor

 Note that junction varactor have a weak dependence of 𝐶௝ upon 𝑉஽, because for 
𝑉஽,௠௔௫ ൌ 1𝑉, then 𝐶௝,௠௔௫ 𝐶௝,௠௜௡⁄ ൎ 1.23 (Low range)
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Varactor Q Calculation Issues

 As shown above, due to the two dimensional flow of current it is  difficult to 
compute the equivalent series resistance of the structure

 N-well sheet resistance can not be directly applied to calculation of varactor series 
resistance
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Current distribution in varactor

Q of varactor is obtained by 
measurement on fabricated 
structures
Difficult to calculate it because of 
the 2D current distribution
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MOS Varactor

 A regular MOSFET exhibits a voltage dependent gate capacitance

 The non-monotonic behavior with respect to gate voltage limits the design 
flexibility
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Variation of gate capacitance with 𝑉 ௌ for a regular MOS device
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Accumulation Mode MOS Varactor

 Accumulation-mode MOS varactor is obtained by placing an NMOS inside an 
nwell

 The variation of capacitance with 𝑉 ௌ is monotonic

 The C/V characteristics scale well with scaling in technology

 Unlike PN junction varactor this structure can operate with positive and negative 
bias so as to provide maximum tuning range
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C/V characteristics of varactor
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Accumulation Mode MOS Varactor Operation

 𝑉 ൏ 𝑉ௌ
 Depletion region is formed under gate 

oxide

 Equivalent capacitance is the series 
combination of gate capacitance and 
depletion capacitance

 𝑉 ൐ 𝑉ௌ
 Formation of channel under gate oxide
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Q of Accumulation mode MOS Varactor

 The Q of the varactor is determined by the resistance between source and drain 
terminals

 Approximately calculated by lumped model shown in above
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Variation of MOS Varactor Q with Capacitance

 For 𝐶௠௜௡, the capacitance is small and resistance is large

 For 𝐶௠௔௫, the capacitance is large and resistance is small

 Above comments suggest that 𝑄 remains relatively constant

 In practice, 𝑄 drops as we increase capacitance from 𝐶௠௜௡ to 𝐶௠௔௫, suggesting 
that relative rise in capacitance is greater than fall in resistance
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Variation of varactor Q with capacitance
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Effect of Overlap Capacitance on Capacitance Range

 Overlap capacitance is relatively voltage independent. 

 Overlap capacitance shifts the C/V characteristics up, yielding a ratio of 
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