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Outline

I This class:
1. Temporal-Difference Prediction
2. Temporal-Difference Control

I Next class:
1. n-step Bootstrapping
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Recommended reading

I Chapter 6 in S. Sutton, and G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 2018.
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Motivation

Motivation
In the previous lecture, we studied the Monte Carlo methods for RL. We have to wait
until the termination of an episode to do an MC update. But if it takes too long for
completion, what can we do? TD Learning!
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Temporal-Difference (TD) Learning

• Combination of Monte Carlo (MC) and Dynamic Programing (DP) ideas:

1. model-free (like MC) – learn directly from experiences, without the knowledge of
MDP.

2. bootstrap (like DP) – update estimates based in part on other learned estimates.

3. online – learn from incomplete episodes, without waiting for a final outcome.
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MC Prediction

Policy evaluation vπ
For a given policy π, estimate the state value function:

vπ(s) := Eπ [Gt|St = s]
= Eπ [Rt+1 + γGt+1|St = s]
= Eπ [Rt+1 + γvπ(St+1)|St = s]

• Constant-α MC update:

V (St) ← V (St) + α[Gt − V (St)]

I Gt is the actual return following time t.

I α is a constant step-size parameter.

I must wait until the end of the episode to determine the increment to V (St).

I the target for the MC update is Gt.
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DP Prediction

Policy evaluation vπ
For a given policy π, estimate the state value function:

vπ(s) := Eπ [Gt|St = s]
= Eπ [Rt+1 + γGt+1|St = s]
= Eπ [Rt+1 + γvπ(St+1)|St = s]

• Iterative DP update:

V (s) ←
∑
a∈A

π(a | s)[R(s, a) + γ
∑
s′∈S

T (s′ | s, a)V (s′)]

I knowledge of the MDP is required.

I vπ(s′) is not known and the current estimate, V (s′), is used instead.
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TD Prediction

Policy evaluation vπ
For a given policy π, estimate the state value function:

vπ(s) := Eπ [Gt|St = s]
= Eπ [Rt+1 + γGt+1|St = s]
= Eπ [Rt+1 + γvπ(St+1)|St = s]

• TD(0) update:

V (St) ← V (St) + α[Rt+1 + γV (St+1)− V (St)]

I update immediately on transition to St+1 and receiving Rt+1.

I need to wait only until the next time step.

I the target for the TD update is Rt+1 + γV (St+1).

I combine the sampling of Monte Carlo with the bootstrapping of DP.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 40



Advantages of TD Prediction Methods

• TD’s advantage over DP:
I model-free – do not require reward or next-state probability distributions.

• TD’s advantage over MC:
I can be implemented in an online, fully incremental fashion.
I applicable in non-terminating environments as well.
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Bias–Variance Tradeoff

• MC target Gt = Rt+1 + γRt+2 + ...+ γT−t−1RT is unbiased.

• True TD target Rt+1 + γvπ(St+1) is unbiased.

• TD target Rt+1 + γV (St+1) is biased.

• MC target relies on many random steps, thus have higher variance.

• TD target relies only on the next random step, thus have much lower variance.
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TD(0) Prediction Algorithm

Tabular TD(0) for estimating vπ
Input: the policy π to be evaluated
Algorithm Parameter: step size α ∈ (0, 1]
Initialize: V (s), for all s ∈ S+, arbitrarily except that V (terminal) = 0
Loop for each episode:

Initialize state S
Loop for each step of episode:

A ← action by policy π for state S
Take action A, observe state S′ and reward R
V (S)← V (S) + α[R+ γV (S′)− V (S)]
S ← S′

until S is terminal
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TD Error

Definition (TD Error)
TD error at time t measures the difference between the current estimated value V (St)
and the better estimate Rt+1 + γV (St+1):

δt := Rt+1 + γV (St+1)− V (St).

I TD error at each time is the error in the estimate made at that time.

I TD error depends on the next state and next reward, it is not actually available
until one time step later.

I that is, δt is the error in V (St), available at time t+ 1.
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MC Error

• The MC error can be written as a sum of TD errors:

Gt − V (St) = Rt+1 + γGt+1 − V (St) + γV (St+1)− γV (St+1)
= δt + γ(Gt+1 − V (St+1))

= δt + γδt+1 + γ2(Gt+2 − V (St+2))

= δt + γδt+1 + γ2δt+2 + ...+ γT−t(GT − V (ST ))

= δt + γδt+1 + γ2δt+2 + ...+ γT−t(0− 0)

=
T−1∑
k=t

γk−tδk

• This identity is not exact if V (St) is updated during episode.

• It may hold approximately when step size α is small.
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Example: Driving Home

State Elapsed
Time

Predicted Time
to Go

Predicted Total
Time

leaving office 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
secondary road,
behind truck

30 10 40

entering home
street

40 3 43

arrive home 43 0 43

I the rewards are the elapsed times on each leg of the journey.

I γ = 1: the return for each state is the actual time to go from that state.

I the value of each state is the expected time to go.

I the second column of numbers gives the current estimated value for each state
encountered.
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Example: Driving Home
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Figure: Changes recommended in the driving home example by MC methods (left) and TD
methods (right) with α = 1.
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Convergence of TD(0)

Theorem (Convergence of TD(0))
For any fixed policy π, TD(0) methods will converge to values of vπ , in the mean for
a constant step-size α if it is sufficiently small, and with probability 1 if the decreasing
step-size {αt} satifies the following condition:

∞∑
t=1

αt =∞,
∞∑
t=1

α2
t <∞.

• Which one of MC and TD methods converge faster?
An open problem, but we can compare them empirically.
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Example: Random Walk

A E B D C 
0 0 0 0 0 1 

Start 

Figure: Random walk and the reward of each transit.
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Figure: Left: values learned after various number of updates in a single run of TD(0). Right: the
root mean-squared (RMS) error between the value functions learned and the true values.
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Batch Update of MC and TD
• In some cases, there are only limited number of experiences available.

• Batch update calculates the increments in each times step but updates the value
function only after processing each complete batch of training data.

• Under batch updating, both TD and MC methods with sufficiently small step size
will converge deterministically, but not necessarily to the same point.
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Figure: The RMS error of MC and TD batch updating in the random walk example.
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Example: You are the Predictor

• States S = {A,B}.

• No discounting: γ = 1.

• 8 episodes of experience:

A, 0, B, 0 B, 1 B, 1 B, 1
B, 1 B, 1 B, 1 B, 0

• What is the value of V (A)?
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Example: You are the Predictor

• MC methods: we have seen A only once and the reward is 0, so V (A) = 0.

• TD methods: 100% of the time A traverses to B, whose estimated value is 0.75, so
V (A) = 0.75.

A B 
r = 0 

r = 1 

r = 0 100% 

75% 

25% 
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Optimality of TD(0)

Definition (Certainty-Equivalence Estimate)
Given some observed episodes, a Markov process can be constructed in the following
way:
I the transition probability from state A to B is the fraction of observed transition
from A that goes to B.

I the associated reward is the average reward obtained on those transitions.
Given this model, certainty-equivalence estimate is the value function which can be
computed exactly.

• In general, TD(0) converges to the certainty-equivalence estimate.
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Optimality of TD(0)

• TD method exploits Markov property:
I batch TD update converges to solution of maximum likelihood Markov model.

I more effective in Markov environments.

• MC method does not exploit Markov property:
I batch MC update converges to solution with minimum mean-squared error on
observed experience.

I more effective in non-Markov environments.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 40



TD Control

• On-policy methods: SARSA.

• Off-policy methods: Q-learning.
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SARSA: On-policy TD Control

• On-policy methods alternately estimate qπ for the
behavior policy π, and update π towards the greediness with
respect to qπ .

• SARSA considers transitions from one state-action pair to
another state-action pair:

Q(St, At)← Q(St, At)+α[Rt+1+γQ(St+1, At+1)−Q(St, At)]
A 
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SARSA Algorithm

Sarsa (on-policy TD control) for estimating Q ≈ q∗

Algorithm Parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Q(s, a), for all s ∈ S+ and a ∈ A(s), arbitrarily except that
Q(terminal, ·) = 0
Loop for each episode:

Initialize state S
Choose A from S using policy based on Q (e.g., ε-greedy)
Loop for each step of episode:

Take action A, observe reward R and next state S′

Choose A′ from S′ using the policy based on Q (e.g., ε-greedy)
Q(S,A)← Q(S,A) + α[R+ γQ(S′, A′)−Q(S,A)]
S ← S′; A← A′

until S is terminal
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Example: Windy Gridworld

• Actions A = {up,down, right, left}

• This is an undiscounted episodic task.

• Constant rewards of −1 until the goal state is reached.

S G 

0 0 0 1 1 1 2 2 1 0 
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Example: Windy Gridworld
• The increasing slope of the graph shows that the goal was reached more quickly
over time.

Figure: Time step - episode curve with SARSA ε = 0.1, α = 0.5
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Q-learning: Off-policy TD Control

• Q-learning update:

Q(St, At) ← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]

• Off-policy methods evaluate the policy π while using another behavior policy µ.

• The learned action-value function, Q, directly approximates q∗, the optimal
action-value function.

• The policy still has an effect in that it determines which state-action pairs are visited
and updated.

• Q has been shown to converge with probability 1 to q∗, under the assumptions:

I all pairs continue to be updated, and

I a variant of the usual stochastic approximation conditions on the sequence of
step-size parameters.
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Q-learning Algorithm

Q-learning (off-policy TD control) for estimating π ≈ π∗

Algorithm Parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Q(s, a), for all s ∈ S+ and a ∈ A(s), arbitrarily except that
Q(terminal, ·) = 0
Loop for each episode:

Initialize state S
Loop for each step of episode:

Choose A from S using policy based on Q (e.g., ε-greedy)
Take action A, observe reward R and next state S′

Q(S,A)← Q(S,A) + α[R+ γmaxaQ(S′, a)−Q(S,A)]
S ← S′

until S is terminal
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Example: Cliff Walking

• Actions A = {up,down, right, left}.

• This is an undiscounted episodic task.

• The reward is −1 on all transitions except the cliff region.

• Stepping into the cliff region incurs a reward of −100 and sends the agent instantly
back to the start.

S The	Cliff G 

R = -1 

R = -100 
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Example: Cliff Walking

S The	Cliff G 

Safer Path 

Optimal Path 

R = -1 

R = -100 

0 100 200 300 400 500
Episodes

100

90

80

70

60

50

40

30

20
S
u
m

 o
f 

re
w

a
rd

s 
d
u
ri

n
g
 e

p
is

o
d
e

Sarsa
Q-Learning

Figure: (Top) Safer path and optimal path.
(Bottom) Online performance of SARSA and Q-learning.
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Expected SARSA

• Update similar to Q-learning except that it uses the expectation instead of the
maximum over the actions:

Q(St, At)← Q(St, At) + α{Rt+1 + γEπ [Q(St+1, At+1) | St+1]−Q(St, At)}

← Q(St, At) + α{Rt+1 + γ
∑
a

π(a | St+1)Q(St+1, a)−Q(St, At)}

• This algorithm moves deterministically in the same direction as SARSA moves in
expectation.

• Expected SARSA has more complex computation but, in return, it has smaller
variance and generally leads to better performance compared with SARSA.
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Example: Cliff Walking
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Figure: Asymptotic and interim performance of SARSA, Expected SARSA and Q-learning, with
various values of α and ε = 0.1. Asymptotic performance is the average of 100000 episodes while
interim performance is the average of first 100 episodes. These data are averages of over 50000
and 10 runs for the interim and asymptotic cases respectively.
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Maximization Bias

• SARSA and Q-learning both involve maximum in the construction of their target
policies. (greedy and ε-greedy).

• Maximization operator leads to positive bias!

B A 
N(-0.1, 1) 0 0 
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Double Learning

• Maximization bias arises because we use the same sample to determine the
maximization action and estimate its value.

• Decouple the choice of maximization action and its estimation – learn two
independent estimates: Q1(a) and Q2(a)

• Given A∗ = arg maxaQ1(a), we have:

E[Q1(A∗)] ≥ q(A∗)
E[Q2(A∗)] = q(A∗)
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Double Q-Learning Algorithm

Double Q-learning, for estimating Q1 ≈ Q2 ≈ q∗

Algorithm Parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Q1(s, a) and Q2(s, a), for all s ∈ S+ and a ∈ A(s), arbitrarily except that
Q(terminal, ·) = 0
Loop for each episode:

Initialize state S
Loop for each step of episode:

Choose A from S using policy based on Q1 +Q2 (e.g., ε-greedy)
Take action A, observe reward R and next state S′

With 0.5 probabilility:
Q1(S,A)← Q1(S,A) + α[R+ γQ2(S′, arg maxaQ1(S′, a))−Q1(S,A)]

Else:
Q2(S,A)← Q2(S,A) + α[R+ γQ1(S′, arg maxaQ2(S′, a))−Q2(S,A)]

S ← S′

until S is terminal
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Q-Learning v.s. Double Q-Learning
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Figure: Comparison between Q-learning and double Q-learning. Q-learning initially learns to take
the left action much more often than the right action.
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Summary - DP, MC and TD

Methods DP MC TD
Model knowledge Need No need No need
When do updates After next step After whole episode After next step
Bias - Unbiased Biased
Variance - Big Small
Convergence in
batch update

- min mean-squared
error

max likelihood
Markov model
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Summary - SARSA, Q-learning

• SARSA: on-policy control, behavior policy is the same as the policy to estimate.

• Q-learning: off-policy control, behavior policy is different as the policy to estimate.

• Expected SARSA: More computation, less variance, empirically better performance.

• Double Learning: decouple action choice and estimation to avoid maximization bias.
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