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Outline

I This class:
1. Value-based Methods for Deep RL

I Next class:
1. Policy Gradient Methods for Deep RL
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Recommended reading

I V. Mnih, et al, Human-level control through deep reinforcement learning, Nature
518.7540 (2015): 529.

I H. Van Hasselt, A. Guez, and D. Silver, Deep reinforcement learning with double
q-learning, AAAI, 2016.

I T. Schaul, et al, Prioritized experience replay, arXiv preprint arXiv:1511.05952
(2015).
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Motivation

Motivation
How to implement Q-learning so that it can be used with complex function
approximators like deep neural networks?
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Recap

• Discounted return: Rt =
∑∞

τ=t γ
τ−trτ

• State-action value function: Qπ(s, a) = E [Rt | st = s, at = a, π]

• State value function: V π(s) = Ea∼π(s) [Qπ(s, a)]

• Advantage function: Aπ(s, a) = Qπ(s, a)− V π(s)

• Optimal state-action value function: Q∗(s, a) = maxπ Qπ(s, a)

• Optimal policy: π∗(s) = arg maxa′ Q∗(s, a′)

• Optimal state value function: V ∗(s) = maxaQ∗(s, a)

• Bellman expectation: Qπ(s, a) = Es′
[
r + γEa′∼π(s′) [Qπ(s′, a′)] | s, a, π

]
• Bellman optimality: Q∗(s, a) = Es′ [r + γmaxa′ Q∗(s′, a′) | s, a]
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Recap : Tabular Q-learning Algorithm

Q-learning (off-policy TD control) for estimating π ≈ π∗

Algorithm Parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Q(s, a), for all s ∈ S+ and a ∈ A(s), arbitrarily except that
Q(terminal, ·) = 0; i← 0
Loop for each episode:

Initialize state si
Loop for each step of episode:

Choose ai from si using policy based on Q (e.g., ε-greedy)
Take action ai, observe reward ri = r (si, ai) and next state s′i
yi ← ri + γmaxaQ(s′i, a)
Q(si, ai)← Q(si, ai)− α {Q(si, ai)− yi}
si+1 ← s′i
i← i+ 1

until si is terminal
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Motivation of Q-learning with Function Approximator

Figure: Screenshots of Pitfall! and Space Invaders.

I In real-life case such as Atari, the size of state space prohibits exhaustive search
I Tabular methods become insufficient and unsuitable

I Looking ahead one second requires 1860 ≈ 1075 simulation steps

Motivation
Consider Q function as a parameteric function Qθ and learn θ, instead of learning
Q(s, a) in tabular Q-learning.
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Q-Learning with Function Approximator

• Learning a parametric Q-function: Qθ (s, a)

• Define: target (s′) = r (s, a) + γmaxa′ Qθ (s′, a′)

• Update: θk+1 ← θk − α∇θEs′∼P (s′|s,a)
[
(Qθ (s, a)− target (s′))2] ∣∣

θ=θk

• For tabular function, θ ∈ RS×A, we recover:

Qk+1 (s, a) ← (1− α) Qk (s, a) + α target(s′),

which converges to optimal values under the conditions discussed in Lecture 4.
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Online Q-Iteration Algorithm

Online Q-Iteration
Algorithm Parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Qθ(s, a), for all s ∈ S+ and a ∈ A(s), arbitrarily except that
Qθ(terminal, ·) = 0; i← 0
Loop for each episode:

Initialize state si
Loop for each step of episode:

Choose ai from si using policy based on Qθ (e.g., ε-greedy)
Take action ai, observe reward ri = r (si, ai) and next state s′i
yi ← ri + γmaxaQθ(s′i, a)

θ ← θ − α {Qθ(si, ai)− yi} dQθdθ (si, ai)
si+1 ← s′i
i← i+ 1

until si is terminal
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Full Fitted Q-Iteration Algorithm

Full Fitted Q-Iteration [4]
Algorithm Parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Qθ(s, a), for all s ∈ S+ and a ∈ A(s), arbitrarily except that
Qθ(terminal, ·) = 0; D ← empty; i← 0
Loop for each episode:

Initialize state si
Loop for each step of episode:

Choose ai from si using policy based on Qθ (e.g., ε-greedy)
Take action ai, observe reward ri = r (si, ai) and next state s′i
Collect samples D ← D ∪ (si, ai, ri, s′i)
si+1 ← s′i
i← i+ 1
If it’s time to update then:

For however many updates do:
yj ← rj + γmaxaQθ(s′j , a), for all (sj , aj , rj , s′j) ∈ D

θ ← arg minθ 1
2
∑

j
(Qθ(sj , aj)− yj)2

D ← empty
until si is terminal
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Q-function with linear function approximation
(on ATARI games)

Figure: Screenshots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

• 49 ATARI 2600 games.

• From pixels to actions.

• The change in score is the reward.

• Same algorithm.

• Same function approximator.

• Same hyperparameters.
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Q-function with linear function approximation
(on ATARI games)

Figure: Reinforcement Learning results for selected games [1]

I Basic, BASS, DISCO, LSH, RAM are five different sets of features to use with
linear function approximation.

I State-of-the art feature sets are heavily depends on the game.
I Better or similar parformance comparing with Human agent (who had never
previously played Atari), not providing accurate human-level benchmarks.

• Feature engineering is hard and boring, can’t we just use neural networks?
I No, it is unstable or divergent with a nonlinear function approximation
I Why, and can we solve the issue?
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Issues in Online Q-Iteration
• Online Q-iteration:

1. take some action ai and observe (si, ai, ri, s′i)

2. θ ← θ − α
{
Qθ(si, ai)−

[
ri + γmaxaQθ(s′i, a)

]}
dQθ
dθ

(si, ai)

• Issues:

1. Sequential states are strongly correlated

2. Q-learning is not gradient descent (through target value)

Figure: Addressing correlated samples issues in online Q-learning.
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Q-Learning with Replay Buffer (I)

• Full fitted Q-iteration:

1. collect dataset D =
{

(si, ai, ri, s′i)
}

using some policy

2. for k = 1, . . . ,K:
2.1 yj ← rj + γmaxaQθ(s′j , a), for all (sj , aj , rj , s′j) ∈ D

2.2 θ ← arg minθ 1
2

∑
j

(Qθ(sj , aj)− yj)2

3. D ← empty

• Full Q-learning with replay buffer:

1. collect dataset
{

(si, ai, ri, s′i)
}

using some policy, add it to D

2. for k = 1, . . . ,K:
2.1 sample a batch (sj , aj , rj , s′j) from D

2.2 θ ← θ − α
∑

j

{
Qθ(sj , aj)−

[
rj + γmaxaQθ(s′j , a)

]}
dQθ
dθ (sj , aj)
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Q-Learning with Replay Buffer (II)

• Samples are no longer correlated

• Multiple samples in the batch (low-variance gradient)

• Q-learning is not gradient descent - this is still a problem!

Figure: Full Q-learning with replay buffer.
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Q-Learning and Regression
• Full Q-learning with replay buffer:

1. collect dataset
{

(si, ai, ri, s′i)
}

using some policy, add it to D

2. for k = 1, . . . ,K:
2.1 sample a batch (sj , aj , rj , s′j) from D

2.2 θ ← θ − α
∑
j

{
Qθ(sj , aj)−

[
rj + γmax

a
Qθ(s′j , a)

]}
dQθ

dθ
(sj , aj)︸                                                                                                    ︷︷                                                                                                    ︸

one gradient step, moving target

• Full fitted Q-iteration:

1. collect dataset D =
{

(si, ai, ri, s′i)
}

using some policy

2. for k = 1, . . . ,K:
2.1 yj ← rj + γmaxaQθ(s′j , a), for all (sj , aj , rj , s′j) ∈ D

2.2 θ ← arg min
θ

1
2

∑
j

(Qθ(sj , aj)− yj)2

︸                                                   ︷︷                                                   ︸
perfectly well-defined, stable regression

3. D ← empty
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Q-Learning with Target Network

• Changing the value of one action will change the value of other actions and similar
states.

• The network can end up chasing its own tail because of bootstrapping.

• Q-learning with replay buffer and target network:

1. save target network parameters θ′ ← θ

2. for k = 1, . . . ,K: % supervised regression
2.1 collect dataset

{
(si, ai, ri, s′i)

}
using some policy, add it to D

2.2 for ` = 1, . . . , L:
2.2.1 sample a batch (sj , aj , rj , s′j) from D

2.2.2 θ ← θ − α
∑

j

{
Qθ(sj , aj)−

[
rj + γ maxa Qθ′ (s

′
j , a)
]}

dQθ
dθ

(sj , aj)

• Targets don’t change in inner loop!
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Deep Q-Learning Algorithm (DQN)

• High-level idea – make Q-learning look like supervised learning.

• Two main ideas for stabilizing Q-learning.

• Apply Q-updates on batches of past experience instead of online:

I Experience replay [2]

I Previously used for better data efficiency.

I Makes the data distribution more stationary.

• Use an older set of weights to compute the targets (target network):

I Keeps the target function from changing too quickly.

Li (θ) = Es,a,r,s′∼D

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θ)

)2
]

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 40



Deep Q-Learning Algorithm (DQN)
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General View of DQN

Figure: A more general view of DQN.

• Online Q-learning: evict immediately, process 1, process 2, and process 3 all run at
the same speed

• DQN: process 1 and process 3 run at the same speed, process 2 is slow
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Implementation details of DQN

• Uses Huber loss instead of squared loss on Bellman error:

Lδ(x) =
{

1
2x

2 for |x| ≤ δ,
δ
(
|x| − 1

2 δ
)

otherwise.

• Uses RMSProp instead of vanilla SGD.

I Optimization in RL really matters.

• It helps to anneal the exploration rate.

I Start ε at 1 and anneal it to 0.1 or 0.05 over the first million frames.
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DQN Architecture

• Lin’s networks did not share parameters among actions.

• Lin’s architecture requires a separate forward pass to compute the Q-value of each
action, resulting in a cost that scales linearly with the number of actions.

• DQN architecture has a separate output unit for each possible action.

• DQN architecture enables to compute Q-values for all possible actions in a given
state with only a single forward pass through the network.
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DQN Architecture

Figure: ATARI Network Architecture: History of frames as input. One output per action - expected
reward for that action Q(s, a).
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DQN on ATARI [3]
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DQN on ATARI

• DQN achieves much better performance than any other methods, even an expert
human player

Figure: Average total reward for various learning methods for a fixed number of steps.
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DQN on ATARI

Figure: Average reward per episode on Breakout and Seaquest respectively during training. The
statistics were computed by running an ε-greedy policy with ε = 0.05 for 10000 steps.
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DQN on ATARI

Figure: Average maximum predicted action-value of a held out set of states on Breakout and
Seaquest respectively.
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Motivation

Motivation
Now, we will study some improved variants of DQN.
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Overestimation in Q-learning

• Target value yj ← rj + γmaxa′ Qθ′ (s′j , a
′)

• Given two random variables X1 and X2:

E [max (X1, X2)] ≥ max (E [X1] ,E [X2])

• Qθ′ (s′, a′) is not perfect – hence maxa′ Qθ′ (s′, a′) overestimates the next value.

• Note that maxa′ Qθ′ (s′, a′) = Qθ′ (s′, arg maxa′ Qθ′ (s′, a′))

I action selected according to Qθ′

I value also comes from Qθ′

• Don’t use the same network to choose the action and evaluate the value – use two
networks!
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Overestimation in Q-learning

Figure: The action values are Q(s, a) = V ∗(s) + εa and the errors {εa}ma=1 are independent
standard normal random variables. Q′ was generated identically and independently.
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Overestimation in Q-learning

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 40



Tabular Double Q-Learning Algorithm

Double Q-learning, for estimating Q1 ≈ Q2 ≈ q∗

Algorithm Parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Q1(s, a) and Q2(s, a), for all s ∈ S+ and a ∈ A(s), arbitrarily except that
Q(terminal, ·) = 0
Loop for each episode:

Initialize state S
Loop for each step of episode:

Choose A from S using policy based on Q1 +Q2 (e.g., ε-greedy)
Take action A, observe reward R and next state S′

With 0.5 probabilility:
Q1(S,A)← Q1(S,A) + α[R+ γQ2(S′, arg maxaQ1(S′, a))−Q1(S,A)]

Else:
Q2(S,A)← Q2(S,A) + α[R+ γQ1(S′, arg maxaQ2(S′, a))−Q2(S,A)]

S ← S′

until S is terminal
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Double DQN [6]

• There is an upward bias in maxaQ(s, a; θ)

• DQN maintains two sets of weight θ and θ−, so reduce bias by using:

I θ for selecting the best action.

I θ− for evaluating the best action.

• Double DQN loss:

Li (θ) = Es,a,r,s′∼D

[(
r + γQ(s′, arg max

a′
Q(s′, a′; θi); θ−i )−Q(s, a; θ)

)2
]
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Double DQN Algorithm
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Double DQN

Figure: Value estimates by DQN (orange) and Double DQN (blue) on Atari games. The straight
horizontal lines are computed by running the corresponding agents after learning concluded, and
averaging the actual discounted return obtained from each visited state. These straight lines would
match the learning curves at the right side of the plots if there is no bias.
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Prioritized Experience Replay (PER)

• Replaying all transitions with equal probability is highly suboptimal.

• Replay transitions in proportion to absolute Bellman error:∣∣∣r + γmax
a′

Q(s′, a′; θ−)−Q(s, a; θ)
∣∣∣

• Leads to much faster learning.
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Double DQN with PER [5]
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Dueling DQN [7]

• Value-Advantage decomposition of Q: Qπ(s, a) = Aπ(s, a) + V π(s)

• θ denotes the parameters of the convolutional layers, while α and β are the
parameters of the two streams of fully-connected layers.

• Dueling DQN:

Q(s, a; θ, α, β) = V (s; θ, β) +A(s, a; θ, α)−
1
|A|

∑
a′

A(s, a′; θ, α)
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