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Outline

I This lecture
1. Policy gradient methods
2. Policy gradient theorem and its proof

I Next lecture
1. Trust Region Policy Optimization
2. Proximal Policy Optimization
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Recommended Reading

I Chapter 13 in S. Sutton, and G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 2018.

I "Policy gradient methods for reinforcement learning with function
approximation", Sutton et al., NIPS, 2000
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Recap

• Value-based methods:
1. Policy evaluation: Learns estimates of either value or state-value functions

vt+1(s)←
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvt(s′)]

qt+1(a, s)←
∑
s′,r

p(s′, r|s, a)
∑
a′

π(a′|s)[r + γqt(s′, a′)]

2. Policy improvement: Design the policy based on these estimates (e.g., greedy
policy, or ε-greedy)

πt+1(s) = arg max
a

∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]

πt+1(s) = arg max
a

qπ(a, s)

MC, TD, SARSA, Q-learning methods all follow this precise scheme !
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Limitations of Value-Based Methods

• Do not scale to high dimensional action spaces (cannot handle continuous actions)

• Lose convergence guarantees when using function approximator of the Q function [1]

• Produce policies that are inherently deterministic

Figure: Short-corridor gridworld
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Motivation

Motivation
Instead of building the policy out of a learned estimated value function, is it possible
to somehow learn the policy directly?
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Parameterizing the Policy

• Parameterized policy methods:

1. parameterize the policy π : S → ∆(A) ≡ {p ∈ R|A| :
∑

a∈A pa = 1} using some
parameter vector θ ∈ Rd (e.g., via a neural network)

2. Define a performance measure J(θ) over the policy parameters

3. Maximize this function over the parameter space
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Policy Gradient Methods

• General (non-convex) optimization problem:

max
θ

J(θ)

• A common method for optimizing the performance measure is the Stochastic
Gradient Method:

θt+1 = θt + α∇̂J(θt) (1)

where ∇̂J(θt) is an unbiased stochastic estimate of the gradient of J at θt.

• Methods following this general scheme are called policy gradient methods.
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Policy Parameterization

• How to choose the policy parameterization π(a|s, θ) ?
I Must be differentiable with respect to the components of θ
I Always assigns non-zero probability to each action, i.e., π(a|s, θ) > 0 ∀a, s, θ
I Can make use of domain knowledge

• Example: Soft-max in action preferences

π(a|s, θ) =
eθ
T x(s,a)∑
b
eθ
T x(s,b)

(2)

for some feature vector x(s, a)

• Most common parameterization: Neural networks
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Performance Measure

• Assume undiscounted episodic case, each episode starting at some particular
non-random state s0 and having length T .

• Define a performance measure as

J(θ) = vπθ (s0)

= Eπθ

[
T−1∑
t=0

Rt

∣∣∣S0 = s0

]

• vπ smooth in π ⇒ vπθ (s) smooth in θ (provided smooth parametrization πθ)
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Policy Gradient Theorem

• ∇θπ(a|s, θ): easy to compute.

• What about ∇J(θ)? The effect of policy on the state distribution is generally
unknown !

Policy gradient theorem (undiscounted case)

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s, θ) (3)

where µ is the state distribution under policy π, i.e., the fraction of time spent in each
state normalized to sum to one.
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Policy Gradient Theorem

Proof
To keep the notation simple, we omit the dependence of π on θ.

Using the expression for vπ from chapter 2, we can write for all state s ∈ S:

∇vπ(s) = ∇

[∑
a

π(a|s)qπ(s, a)

]
=
∑
a

[∇π(a|s)qπ(s, a) + π(a|s)∇qπ(s, a)]

=
∑
a

[
∇π(a|s)qπ(s, a) + π(a|s)∇

∑
s′,r

p(s′, r|s, a)(r + vπ(s′))

]

=
∑
a

[
∇π(a|s)qπ(s, a) + π(a|s)

∑
s′

p(s′|s, a)∇vπ(s′)

]
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Policy Gradient Theorem

Proof (cont’d)
By unrolling once the previous computation, we get

∇vπ(s) =
∑
a

[
∇π(a|s)qπ(s, a) + π(a|s)

∑
s′

p(s′|s, a)

∑
a′

[
∇π(a′|s′)qπ(s′, a′) + π(a′|s′)

∑
s′′

p(s′′|s′, a′)∇vπ(s′′)

]]

Similarly, by unrolling it infinitely many times, we obtain

∇vπ(s) =
∑
x∈S

∞∑
k=0

Pr(s→ x, k, π)
∑
a

∇π(a|x)qπ(x, a),

where Pr(s→ x, k, π) is the probability of transitioning from state s to state x in
exactly k steps under policy π.
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Policy Gradient Theorem

Proof (cont’d)
By definition of J(θ) = vπ(s0), it is then immediate that

∇J(θ) =
∑
s

(
∞∑
k=0

Pr(s0 → s, k, π)

)∑
a

∇π(a|s)qπ(s, a)

∝
∑
s

µ(s)
∑
a

∇π(a|s)qπ(s, a),

where the proportionality constant is the average length of the episode.
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Computing a Stochastic Estimate ∇̂J(θ)

• ∇J(θ) ∝
∑

s
µ(s)

∑
a
qπ(s, a)∇π(a|s, θ)→ computationally intractable !

• Rewrite the full gradient expression as follows:

∇J(θ) ∝ ESt∼π

[∑
a

qπ(St, a)∇π(a|St, θ)

]
= ESt,At∼π

[
qπ(St, At)

∇π(At|St, θ)
π(At|St, θ)

]
where At ∼ π(·|St)

= ESt,At∼π,Rt
[
Gt
∇π(At|St, θ)
π(At|St, θ)

]
where Gt =

T∑
t′=t+1

Rt′

• We can thus define an unbiased estimate for ∇J(θt) as:

∇̂J(θ) ∝ Gt
∇π(At|St, θ)
π(At|St, θ)

where At ∼ π(·|St) (4)
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REINFORCE: Monte Carlo Policy Gradient [2]

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π∗

Algorithm parameter: step size α > 0.

Initialize policy parameter θ ∈ Rd (e.g. to 0))
for each episode do
Generate an episode S0, A0, R1, ..., ST−1, AT−1, RT following π(.|., θ)
for each step of the episode t=0,1,...,T-1 do
G←

∑T

k=t+1 γ
k−t−1Rk

θ ← θ + αγtG
∇π(At|St,θ)
π(At|St,θ)

end for
end for

• The use of stochastic gradient method ensures the convergence to a local optimum
when choosing a decreasing step αt such that

∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞.
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Example: Short-corridor gridworld using REINFORCE

• Small enough step size ⇒ moves towards a local optimum

• Main drawback: The MC stochastic estimate of the gradient typically have high
variance, leading to slow learning.
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Variance Reduction: Including a Baseline

• Observe that for any function b(s) over states (not depending on the actions),∑
a

b(s)∇π(a|s, θ) = b(s)∇
∑
a

π(a|s, θ) = b(s)∇1 = 0

• Therefore, we can generalize the policy gradient theorem (3) by including the
baseline b(s) as follows:

∇J(θ) ∝
∑
s

µ(s)
∑
a

(qπ(s, a)− b(s))∇π(a|s, θ) (5)

without modifying its expected value. Using the same procedure as previously, this
gives rise to the new update rule:

θt+1 = θt + α(Gt − b(St))
∇π(At|St, θ)
π(At|St, θ)

. (6)

• Baseline leaves the expected value of the update unchanged, but can have a large
effect on its variance if carefully chosen.
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Baseline Choices

θt+1 = θt + α(Gt − b(St))
∇π(At|St, θ)
π(At|St, θ)

• The baseline b(s) must be chosen so as to reduce the variance of the policy gradient
stochastic estimate coming from the stochasticity of the return Gt.

• A natural choice is an estimate of the state value vπ .

• Similarly as in Lecture 7, we parameterize this function as v̂(St,w), where w is a
parameter vector that must be learned during the algorithm.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 33



REINFORCE with Baseline

REINFORCE with baseline (episodic) for estimating πθ = π∗

Algorithm parameters: step sizes αw > 0, αθ > 0.

Initialize policy parameter θ ∈ Rd and state-value weights w ∈ Rd (e.g. to 0))
for each episode do
Generate an episode S0, A0, R1, ..., ST−1, AT−1, RT following π(.|., θ)
for each step of the episode t=0,1,...,T-1 do
G←

∑T

k=t+1 γ
k−t−1Rk

δ ← G− v̂(St,w)
w← w + αwγtδ∇v̂(St,w)
θ ← θ + αθγtδ

∇π(At|St,θ)
π(At|St,θ)

end for
end for

• Rule of thumb for setting αw: αw = 0.1
E‖∇v̂(St,w)‖2

µ
(Lecture 7).

• Drawbacks:
I Hard to choose αθ

I MC method → slow
I Inconvenient to implement online or for continuing problems
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Example: Short-corridor gridworld using REINFORCE with baseline

• Baseline reduces gradient variance ⇒ can use larger step-size ⇒ faster convergence
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Actor-Critic (AC) Methods

• Actor: refers to the policy (which decides on which action to make)

• Critic: refers to the state-value function (which influences the update rule during
policy optimization)

• One-step AC method: Replace the full return of REINFORCE with the one-step
return:

θt+1 = θt + α(Rt+1 + γv̂(St+1,w)− v̂(St,w))
∇π(At|St, θt)
π(At|St, θt)

(7)

• AC method introduces bias, but reduces variance and accelerates learning.

• This approach can be generalized to include eligibility traces, and thus allows for
flexibility in the degree of bootstrapping.
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One-step Actor-Critic Algorithm

One-step Actor-Critic (episodic), for estimating πθ = π∗

Algorithm parameters: step sizes αw > 0, αθ > 0.

Initialize policy parameter θ ∈ Rd and state-value weights w ∈ Rd (e.g. to 0))
for each episode do
Initialize S0 (first state of episode)
for each step of the episode t=0,1,...,T-1 do
At ∼ πθ(·|St, θ)
Take action At, observe St+1, R
δ ← R+ γv̂(St+1,w)− v̂(St,w)
w← w + αwγtδ∇v̂(Sr,w)
θ ← θ + αθγtδ

∇π(At|St,θ)
π(At|St,θ)

end for
end for
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Actor-Critic Algorithm with Eligibility Traces

Actor-Critic with Eligibility Traces (episodic), for estimating πθ = π∗

Algorithm parameters: trace-decay rates λw ∈ [0, 1], λθ ∈ [0, 1], step sizes
αw > 0, αθ > 0.

Initialize policy parameter θ ∈ Rd and state-value weights w ∈ Rd (e.g. to 0))
for each episode do
Initialize S0 (first state of episode)
zw ← 0
zθ ← 0
for each step of the episode t=0,1,...,T-1 do
At ∼ πθ(·|St, θ)
Take action At, observe St+1, R
δ ← R+ γv̂(St+1,w)− v̂(St,w)
zw ← γλwzw + γt∇v̂(S,w)
zθ ← γλθzθ + γt

∇π(At|St,θ)
π(At|St,θ)

w← w + αwδzw

θ ← θ + αθδzθ
end for

end for
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Policy Gradients for Continuing Problems

• Similar results can be proved for the continuing case, although some quantities need
to be re-defined.

• Performance measure:

J(θ) = lim
t→∞

E[Rt|A0, A1, ..., At−1 ∼ π]

=
∑
s

µ(s)
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)r,

where µ is the steady distribution under π, i.e.,
µ(s) ≡ limt→∞ Pr(St = s|A0, A1, ..., At−1 ∼ π).

• State-action value function qπ(s, a) = Eπ [Gt|St = s,At = a] defined with respect
to the differential return

Gt ≡ Rt+1 − J(π) +Rt+2 − J(π) +Rt+3 − J(π) + ...

• Using these definitions, the policy gradient theorem remains valid:

∇J(θ) =
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s, θ).
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Actor-Critic algorithm with Eligibility Traces (continuing)

Actor-Critic with Eligibility Traces (continuing), for estimating πθ = π∗

Algorithm parameters: λw ∈ [0, 1], λθ ∈ [0, 1], αw > 0, αθ > 0, αR̄ > 0.

Initialize R̄ ∈ R (e.g. 0), policy parameter θ ∈ Rd and state-value weights w ∈ Rd
(e.g. to 0))
Initialize S0 (initial state)
zw ← 0
zθ ← 0
for each step of the episode t=0,1,... do
At ∼ πθ(·|St, θ)
Take action At, observe St+1, R
δ ← R− R̄+ v̂(St+1,w)− v̂(St,w)
R̄← R̄+ αR̄δ
zw ← γλwzw +∇v̂(S,w)
zθ ← γλθzθ + ∇π(At|St,θ)

π(At|St,θ)
w← w + αwδzw

θ ← θ + αθδzθ
end for
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Policy Parameterization for Continuous Actions

• Continuous action space: what parametrization to use ?

• Solution 1: learn a deterministic policy π : S → A and parameterize it directly
(Lecture 10).

• Solution 2: restrict the class of possible probability distributions on the action space
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Example: Gaussian Parameterization for Continuous Policy

• Common choice for parameterized policy over continuous action spaces:

π(a|s, θµ, θσ) =
1

σ(s, θσ)
√

2π
exp
(
−

(a− µ(s, θµ))2

sσ(s, θσ)2

)
,

where µ, σ are two differentiable function approximators, parameterized by θµ, θσ
respectively.

• Using the chain rule, we can obtain the policy gradient as follows:

∇θµπ(a|s, θ)
π(a|s, θ)

=
(a− µ(s, θµ))
σ(s, θσ)2 ∇µ(s, θµ)

∇θσπ(a|s, θ)
π(a|s, θ)

=
(

(a− µ(s, θµ))2

σ(s, θσ)2 − 1
)
∇σ(s, θσ)
σ(s, θσ)

,

where θ = [θµ, θσ ]T .
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Advantages of Policy Gradient Methods

• Can deal with continuous action space (very useful in robotics)

• The policy parameterization can exploit the representation power of neural network
and incorporate domain knowledge

• Can exploit a large class of optimization algorithms coming from the literature

• Convergence at least to a local optimum is guaranteed

• Policy may be easier to parameterize than the value function
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Disadvantages of Policy Gradient Methods

• Black-box policy

• Can be very sensitive to step-size selection

• Only converge to local optimum solution

• Harder to train off-policy

• Performance quite depends on chosen parameterization (need knowledge about the
system)

• Policy may be harder to parameterize than the value function
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Conclusion

• We introduced policy gradient methods by rephrasing the RL problem as a
continuous optimization problem.

• We proved the policy gradient theorem, which provides a way of computing unbiased
estimate of the objective function gradient.

• Orthogonal strengths-weaknesses compared to value-based methods

• This opens the box of a variety of new RL methods, by exploiting the wide literature
of continuous optimization.
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