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Outline

> This lecture

1. Policy gradient methods
2. Policy gradient theorem and its proof

> Next lecture

1. Trust Region Policy Optimization
2. Proximal Policy Optimization
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Recommended Reading

» Chapter 13 in S. Sutton, and G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 2018.

> "Policy gradient methods for reinforcement learning with function
approximation", Sutton et al., NIPS, 2000
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Recap

e Value-based methods:

1. Policy evaluation: Learns estimates of either value or state-value functions

vi+1(8) Z 7(als) Zp(s', r|s,a)[r + yvi(s')]

qer(a,s) — Y p(s'srls,a) Y w(@|s)r +a(s’,a)

s'r a’

2. Policy improvement: Design the policy based on these estimates (e.g., greedy
policy, or e-greedy)

mi41(s) — argmax 3 p(s',rls, )l + 70 ()
a
s',r

Ti+1(s) = argmax g (a, 5)
a

MC, TD, SARSA, Q-learning methods all follow this precise scheme !
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Limitations of Value-Based Methods

e Do not scale to high dimensional action spaces (cannot handle continuous actions)
e Lose convergence guarantees when using function approximator of the Q function [1]

e Produce policies that are inherently deterministic
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Figure: Short-corridor gridworld
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Motivation

Motivation

Instead of building the policy out of a learned estimated value function, is it possible
to somehow learn the policy directly?
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Parameterizing the Policy

e Parameterized policy methods:

1. parameterize the policy 7 : S — A(A) = {p € RIAI : ZaeAp“ = 1} using some

parameter vector 6 € R? (e.g., via a neural network)
2. Define a performance measure J(6) over the policy parameters

3. Maximize this function over the parameter space
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Policy Gradient Methods

o General (non-convex) optimization problem:
max J(6)
[
e A common method for optimizing the performance measure is the Stochastic

Gradient Method: -
‘9t+1 =0 + aVJ(Ot) (1)

—

where VJ(0;) is an unbiased stochastic estimate of the gradient of J at 6;.

e Methods following this general scheme are called policy gradient methods.
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Policy Parameterization

e How to choose the policy parameterization m(als,0) ?

» Must be differentiable with respect to the components of 6

> Always assigns non-zero probability to each action, i.e., w(a|s,0) > 0 Va, s, 0

» Can make use of domain knowledge

e Example: Soft-max in action preferences
eBTx(s,a)

Zb 0T x(s,b)

m(als, ) =
for some feature vector x(s, a)

o Most common parameterization: Neural networks
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Performance Measure

e Assume undiscounted episodic case, each episode starting at some particular
non-random state sgp and having length T'.

e Define a performance measure as

J(0) = vry(s0)
T—1

=Ery | Y R

t=0

So = so

® v; smooth in ™ = v, (s) smooth in § (provided smooth parametrization )
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Policy Gradient Theorem

o Vym(als,0): easy to compute.

e What about V.J(0)? The effect of policy on the state distribution is generally
unknown !

Policy gradient theorem (undiscounted case)

VJ(0) Z 1(s) Z = (s,a)Vr(als, 0) 3)

where p is the state distribution under policy T, i.e., the fraction of time spent in each
state normalized to sum to one.
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Policy Gradient Theorem

Proof

To keep the notation simple, we omit the dependence of 7 on 6.

Using the expression for v, from chapter 2, we can write for all state s € S:

Vur(s) =V Zﬂ(a|s)qw(s,a)

a

=) " [vn(als)gn(s, a) + w(als) Vax (s, a)]

=3 | Vr(als)an(s,a) +7(@ls)V Y oS, rls, @) + on ()

=" | Vnlals)an(s,a) + m(als) Y p(s'ls, a)Von(s')
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Policy Gradient Theorem

Proof (cont'd)

By unrolling once the previous computation, we get

Vur(s) = Y | Vr(als)an(s,a) + m(als) Y p(s'lsa)

a

’

> | Vr(dls)an (s’ a) + w(a'ls) > p(s"|s' 0 ) Tun(s")
S”

a

Similarly, by unrolling it infinitely many times, we obtain

Vour(s :ZZPT s—x,k W)ZVW alz)gr(z,a),

z€S k=0

where Pr(s — x, k, ) is the probability of transitioning from state s to state z in
exactly k steps under policy 7.
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Policy Gradient Theorem

Proof (cont'd)
By definition of J(6) = vx(s0), it is then immediate that

VJ(0) = Z ZP’V‘(SO — s, k,m) ZVW(a|s)q7r(s,a)
k=0 a

<Y ul(s) Y Vr(als)gn(s,a),

where the proportionality constant is the average length of the episode.
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Computing a Stochastic Estimate V.J(0)

e VJ(O Z u(s Z gr(s,a)Vr(als,0) — computationally intractable !

e Rewrite the full gradient expression as follows:

VI(0) < Esynr | D an(St,a)Vr(alSi, 0)

a

Vﬂ(At|St,9)]
=E ~r | @r (St Ay) ————=| where Ay ~ 7(+|S,
et 0550 A0 TS EU | where Ay n(150)
Vr(A¢|Se, 0) o
_ m(At|St, _ ,
=Es,, Ay ~m, Ry [Gtiﬂ(f‘dstﬁ) } where Gy = E R,
t'=t+1
e We can thus define an unbiased estimate for V.J(0;) as
— Vr(A¢|St,0)
VJ(0) x Gt————2—+ where A; ~ m(:|S 4
) ox Ge TGt 50 D) where 4y ~ (150 *)
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REINFORCE: Monte Carlo Policy Gradient [2]

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for 7*
Algorithm parameter: step size o > 0.

Initialize policy parameter § € R? (e.g. to 0))

for each episode do
Generate an episode Sy, Ao, R1, ..., ST7—1, Ar_1, R following 7(.|., 0)
for each step of the episode t=0,1,...,T-1 do

T k—t—1
GHZk:tJrl’y Rk

Vr(A¢|St,0)
0+ 0+ a'ytciw(mt\stfe)
end for
end for

e The use of stochastic gradient method ensures the convergence to a local optimum
when choosing a decreasing step a: such that Ezo at = oo and Ezo a? < oo0.
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Example: Short-corridor gridworld using REINFORCE
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e Small enough step size = moves towards a local optimum

e Main drawback: The MC stochastic estimate of the gradient typically have high
variance, leading to slow learning.

IGEIIl  Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 33 EPFL



Variance Reduction: Including a Baseline

e Observe that for any function b(s) over states (not depending on the actions),

Z b(s)Vr(als, 0) = b(s)V Z (als,0) = b(s)V1 =0

a

e Therefore, we can generalize the policy gradient theorem (3) by including the
baseline b(s) as follows:

VI0) o< Y ()Y (an(s,0) = b(s)) Vn(als, 0) (5)

a

without modifying its expected value. Using the same procedure as previously, this
gives rise to the new update rule:

V(A St, 0)

6t+1 = Gt + (X(Gt — b(St)) 7r(At|St 0) .

(6)

e Baseline leaves the expected value of the update unchanged, but can have a large
effect on its variance if carefully chosen.
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Baseline Choices

Vr(At|St,0)

9t+1 =0 + OL(Gt — b(St)) W(At‘st 9)

e The baseline b(s) must be chosen so as to reduce the variance of the policy gradient
stochastic estimate coming from the stochasticity of the return G;.

e A natural choice is an estimate of the state value v.

e Similarly as in Lecture 7, we parameterize this function as 9(S¢,w), where w is a
parameter vector that must be learned during the algorithm.
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REINFORCE with Baseline

REINFORCE with baseline (episodic) for estimating mg = .
Algorithm parameters: step sizes ¥ > 0,a? > 0.

Initialize policy parameter § € R% and state-value weights w € R? (e.g. to 0))
for each episode do

Generate an episode So, Ao, R1, ..., S7—1, Ar_1, Ry following 7(.|., 0)
for each step of the episode t=0,1,...,T-1 do
T i
G «— Zk:z+1’yk t le
6+ G— @(St,w)
W w + "y VH(St, w)
0+ 0+ aG,yt(;VT"(AHSt)Q)

m(A¢|St,0)
end for
end for
e Rule of thumb for setting a%: a% = m (Lecture 7).

e Drawbacks:
» Hard to choose af
> MC method — slow

> Inconvenient to implement online or for continuing problems
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Example: Short-corridor gridworld using REINFORCE with baseline
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e Baseline reduces gradient variance = can use larger step-size = faster convergence
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Actor-Critic (AC) Methods

e Actor: refers to the policy (which decides on which action to make)

e Critic: refers to the state-value function (which influences the update rule during
policy optimization)

e One-step AC method: Replace the full return of REINFORCE with the one-step

return:
Vr(A¢|St, 0t)

w(A¢|St, 0r) ")

Orr1 = 0 + a(Reg1 + 70(St41, w) — 0(St, w))

o AC method introduces bias, but reduces variance and accelerates learning.

e This approach can be generalized to include eligibility traces, and thus allows for
flexibility in the degree of bootstrapping.
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One-step Actor-Critic Algorithm

One-step Actor-Critic (episodic), for estimating mp = .
Algorithm parameters: step sizes ¥ > 0,a? > 0.

Initialize policy parameter § € R% and state-value weights w € R? (e.g. to 0))
for each episode do
Initialize So (first state of episode)
for each step of the episode t=0,1,...,T-1 do
At 2 7r9(-\St,0)
Take action A¢, observe Siy1, R
0+ R+ ~v0(St+1,w) — 0(St, w)
w <+ w + a6V H(Sy, w)

0 Vr(A¢|St,0)
6« 0+ oy Tris by
end for
end for
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Actor-Critic Algorithm with Eligibility Traces

Actor-Critic with Eligibility Traces (episodic), for estimating mg = .

Algorithm parameters: trace-decay rates AW € [0,1], A% € [0, 1], step sizes
a¥ > 0,af > 0.

Initialize policy parameter § € R? and state-value weights w € R? (e.g. to 0))
for each episode do
Initialize So (first state of episode)
"+ 0
2% 0
for each step of the episode t=0,1,...,T-1 do
Ay ~ mp (| St, 0)
Take action A¢, observe Siy1, R
0+ R+ v0(St41,w) — 9(St, w)
2V < YAWZY + EVH(S, w)
w < w+ aWozW
0+ 0+ a?62?
end for
end for
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Policy Gradients for Continuing Problems

e Similar results can be proved for the continuing case, although some quantities need
to be re-defined.

e Performance measure:

J(6) = lim E[R¢|Ag, A1, ..., Ay—1 ~ 7]

t— oo

D ()Y wlals) > p(srls,a)r,

where 1 is the steady distribution under 7, i.e.,
w(s) = limg— o0 Pr(St = s|Ao, A1, ..., Ap—1 ~ 7).

e State-action value function ¢x(s,a) = Ex[G¢|St = s, At = a] defined with respect
to the differential return

Gy = Rit1 7](7T)+Rt+2 7](7T)+Rt+3 7](71’)4’...

e Using these definitions, the policy gradient theorem remains valid:

V() = Z 1(s) Z 4x(s,a)V(als, 0).
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Actor-Critic algorithm with Eligibility Traces (continuing)

Actor-Critic with Eligibility Traces (continuing), for estimating 7y = .
Algorithm parameters: AW € [0,1],\? € [0,1],a¥ > 0,2 > 0, of > 0.

Initialize R € R (e.g. 0), policy parameter # € R? and state-value weights w € R?
(e.g. to 0))
Initialize Sp (initial state)
V0
20«0
for each step of the episode t=0,1,... do
A¢ ~ 7o (+|St, 0)
Take action A¢, observe Siy1, R
§+—~R—R+ O(St41,w) — 0(St, w)
R+ R+afs
2V — Y AYZY + V(S w)
o o St
W< w+ aWozW
0« 0+ a?sz?
end for
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Policy Parameterization for Continuous Actions

e Continuous action space: what parametrization to use ?

e Solution 1: learn a deterministic policy 7 : S — A and parameterize it directly
(Lecture 10).

e Solution 2: restrict the class of possible probability distributions on the action space
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Example: Gaussian Parameterization for Continuous Policy

e Common choice for parameterized policy over continuous action spaces:
L (e p00)?
o(s,05) V2w 50(s,00)2 ’

where p, o are two differentiable function approximators, parameterized by 6,,, 6,
respectively.

w(als,0u,05) =

e Using the chain rule, we can obtain the policy gradient as follows:

Vo,7(al5,0)  (a— p(s,00))

n(als,0) - 0(5,9;): Viu(s,0)
Vﬁgﬂ'(a|s70) — <(alu'(3,9,u,))2 _ 1) VU(S,OO’)
m(als,0) o(s,00)2 (.00)

where 0 = [0,,,05]T.
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Advantages of Policy Gradient Methods

e Can deal with continuous action space (very useful in robotics)

e The policy parameterization can exploit the representation power of neural network
and incorporate domain knowledge

e Can exploit a large class of optimization algorithms coming from the literature
e Convergence at least to a local optimum is guaranteed

e Policy may be easier to parameterize than the value function
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Disadvantages of Policy Gradient Methods

e Black-box policy

e Can be very sensitive to step-size selection
e Only converge to local optimum solution
e Harder to train off-policy

e Performance quite depends on chosen parameterization (need knowledge about the
system)

e Policy may be harder to parameterize than the value function
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Conclusion

e We introduced policy gradient methods by rephrasing the RL problem as a
continuous optimization problem.

o We proved the policy gradient theorem, which provides a way of computing unbiased
estimate of the objective function gradient.

e Orthogonal strengths-weaknesses compared to value-based methods

e This opens the box of a variety of new RL methods, by exploiting the wide literature
of continuous optimization.
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