Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 8: Policy Gradient Methods II

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2020)

License Information for Reinforcement Learning Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

This lecture

- 1. Trust Region Policy Optimization
- 2. Proximal Policy Optimization

Next lecture

1. Actor-Critic Methods for Deep RL

Recommended Reading

- Schulman, John and Levine, Sergey and Abbeel, Pieter and Jordan, Michael and Moritz, Philipp. *Trust region policy optimization.*, International Conference on Machine Learning, 2015.
- Schulman, John and Wolski, Filip and Dhariwal, Prafulla and Radford, Alec and Klimov, Oleg. Proximal policy optimization algorithms, arXiv preprint, 2017.

Policy Gradient Method

- Policy gradient methods (PGM):
 - Parametrize a stochastic policy using parameter vector θ
 - Define a performance measure $J(\theta) = \mathbb{E}_{s_0} v_{\pi_{\theta}}(s_0)$
 - Maximize J over θ using Stochastic Gradient Descent:

$$\theta_{t+1} = \theta + \alpha \widehat{\nabla J}(\theta_t)$$

• Goal of this lecture: Present two state-of-the-art practical algorithms based on PGM.

Trust Region Policy Optimization

- Trust Region Policy Optimization (TRPO) [3]:
 - Introduces a surrogate objective performance measure.
 - ▶ Designs a theoretical update scheme which iteratively updates a policy in a way that guarantees monotone improvement, i.e., ensures $J(\pi_{t+1}) \ge J(\pi_t)$.
 - Approximates this theoretical scheme using optimization tools.

TRPO: Preliminaries

Lemma

Given any two policies π , $\tilde{\pi}$,

$$J(\tilde{\pi}) = J(\pi) + \mathbb{E}_{\tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t a_{\pi}(S_t, A_t) \right]$$
(1)

where $a_{\pi}(s,a) = q_{\pi}(s,a) - v_{\pi}(s)$ is the advantage function.

Proof:

lions@epfl

First note that $a_{\pi}(s,a) = \mathbb{E}_{s' \sim p(s'|s,a)}[r(s) + \gamma v_{\pi}(s') - v_{\pi}(s)]$. Therefore,

$$\mathbb{E}_{\tilde{\pi}}\left[\sum_{t=0}^{\infty}\gamma^{t}a_{\pi}(S_{t},A_{t})\right] = \mathbb{E}_{\tilde{\pi}}\left[\sum_{t=0}^{\infty}\gamma^{t}(r(S_{t})+\gamma v_{\pi}(S_{t+1})-v_{\pi}(S_{t}))\right]$$
$$= \mathbb{E}_{\tilde{\pi}}\left[-v_{\pi}(s_{0})+\sum_{t=0}^{\infty}\gamma^{t}r(S_{t})\right]$$
$$= -\mathbb{E}_{s_{0}}[v_{\pi}(s_{0})] + \mathbb{E}_{\tilde{\pi}}\left[\sum_{t=0}^{\infty}\gamma^{t}r(S_{t})\right]$$
$$= -J(\pi) + J(\tilde{\pi})$$

Slide 7/ 28

EPFL

TRPO: Preliminaries

Equation (1) can be rewritten with a sum over states instead of time steps:

$$J(\tilde{\pi}) = J(\pi) + \sum_{t=0}^{\infty} \sum_{s} P(S_t = s|\tilde{\pi}) \sum_{a} \tilde{\pi}(a|s) \gamma^t a_{\pi}(a,s)$$
$$= J(\pi) + \sum_{s} \sum_{t=0}^{\infty} \gamma^t P(S_t = s|\tilde{\pi}) \sum_{a} \tilde{\pi}(a|s) a_{\pi}(a,s)$$
$$= J(\pi) + \sum_{s} \rho_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) a_{\pi}(a,s)$$
(2)

where $\rho_{\tilde{\pi}}(s)=\sum_{t=0}^{\infty}\gamma^t P(S_t=s|\tilde{\pi})$ is the unnormalized discounted visitation frequency.

TRPO: Preliminaries

$$J(\tilde{\pi}) = J(\pi) + \sum_{s} \rho_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) a_{\pi}(a,s)$$
(3)

• Equation (3) gives an alternative way of optimizing the performance J, by maximizing the right hand side for any fixed policy π .

• However, the complex dependency of $\rho_{\tilde{\pi}}$ on $\tilde{\pi}$ makes it difficult to optimize directly. Instead, let's introduced the following surrogate to J:

$$L_{\pi}(\tilde{\pi}) = J(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) a_{\pi}(a,s)$$
(4)

i.e. $\rho_{\tilde{\pi}}$ is simply replaced by ρ_{π} .

lions@epfl

• It is easy to check that for any differentiable parametrized policy π_{θ} and $\pi_{\theta_{old}}$,

$$L_{\pi_{\theta_{old}}}(\pi_{\theta_{old}}) = J(\pi_{\theta_{old}})$$
(5)

$$\nabla_{\theta} L_{\pi_{\theta_{old}}}(\pi_{\theta}) \Big|_{\theta = \theta_{old}} = \nabla_{\theta} J(\pi_{\theta}) \Big|_{\theta = \theta_{old}}.$$
 (6)

 \Rightarrow a sufficiently small step $\pi_{\theta_{old}} \to \tilde{\pi}$ that improves $L_{\pi_{\theta_{old}}}$ will also improve J!

Monotonic Improvement Guarantee for General Stochastic Policies

• Question: How big of a step to take?

Theorem

For any two stochastic policies $\pi, \tilde{\pi}$, we have

$$J(\tilde{\pi}) \geq L_{\pi}(\tilde{\pi}) - CD_{KL}^{max}(\pi, \tilde{\pi})$$
(7)

where $D_{KL}^{max}(\pi, \tilde{\pi}) = \max_{s} D_{KL}(\pi(.|s)||\tilde{\pi}(.|s)), C = \frac{4\epsilon\gamma}{(1-\gamma)^2}$ and $\epsilon = \max_{s,a} |A_{\pi}(s, a)|.$

Proof: on the board, or see [2, 3].

• Thanks to (5), we see that this upper bound becomes tight for $\pi = \tilde{\pi}$.

Monotonic Improvement Guarantee for General Stochastic Policies

$$\begin{split} J(\tilde{\pi}) &\geq L_{\pi}(\tilde{\pi}) - CD_{KL}^{max}(\pi, \tilde{\pi}) \\ J(\pi_{\theta_{old}}) &= L_{\pi_{\theta_{old}}}(\pi_{\theta_{old}}) \end{split}$$

• For any fixed policy π , maximizing the RHS of (7) necessary leads to a new policy with better performance than with π , i.e.,

$$\tilde{\pi}^* = \underset{\tilde{\pi}}{\arg\max} L_{\pi}(\tilde{\pi}) - CD_{KL}^{max}(\pi, \tilde{\pi}) \Rightarrow J(\tilde{\pi}^*) \ge J(\pi)$$

• To see this, let $M_i(\pi) = L_{\pi_i}(\pi) - CD_{KL}^{max}(\pi_i, \pi)$. Then

$$\begin{split} J(\pi_{i+1}) &\geq M_i(\pi_{i+1}) \text{ by (7)} \\ J(\pi_i) &= M_i(\pi_i) \text{ by (5), therefore,} \\ J(\pi_{i+1}) - J(\pi_i) &\geq M_i(\pi_{i+1}) - M_i(\pi_i). \end{split}$$

Thus, by maximizing M_i at each iteration, we guarantee that the true objective J is non-decreasing.

Monotonic Improvement Guarantee for General Stochastic Policies

Algorithm 1 Policy iteration algorithm guaranteeing non-decreasing expected return

- 1: Initialize π_0
- 2: for i=0,1,2,... until convergence do
- 3: Compute all advantage values $A_{\pi_i}(s, a)$.
- 4: Solve

$$\pi_{i+1} = \operatorname*{arg\,max}_{\tilde{\pi}} L_{\pi_i}(\tilde{\pi}) - CD_{KL}^{max}(\pi_i, \tilde{\pi}),\tag{8}$$

where
$$C = \frac{4\epsilon\gamma}{(1-\gamma)^2}$$

5: end for

• Algorithm 1 is guaranteed to generate a monotonically improving sequence of policies $J(\pi_0) \leq J(\pi_1) \leq J(\pi_2) \leq \dots$

- The theoretical constant turns out to be much too large in practice, leading to very small updates, and is difficult to choose manually.
- Computation of L_{π} requires knowledge of the advantage function A_{π} .
- We must efficiently solve the optimization problem (8) for updating the policy.

Replace Penalization by a Hard Trust Region Constraint

• Replace the penalization by a hard constraint on the KL divergence between the old and the new policy, i.e., a trust region constraint:

$$\max_{\pi} L_{\pi_{old}}(\pi)$$
subject to $D_{KL}^{max}(\pi_{old},\pi) \le \delta,$
(9)

The upper bound δ on the maximum KL divergence turns out to be much less problem dependent, and easier to tune.

- But: The number of constraint is equal to |S| !!
- Replace D_{KL}^{max} by the average KL divergence over all states:

$$\max_{\pi} L_{\pi_{old}}(\pi)$$
subject to $\bar{D}_{KL}^{\rho_{\pi_{old}}}(\pi_{old},\pi) \le \delta$

$$(10)$$

where $\bar{D}_{KL}^{\rho_{\pi}}(\pi_1, \pi_2) = \mathbb{E}_{s \sim \rho_{\pi}} \left[D_{KL}(\pi_1(.|s), \pi_2(.|s)) \right]$

Recasting Problem (10)

• Expand $L_{\pi_{old}}(\pi)$ in problem (10):

$$\begin{split} \max_{\pi} \sum_{s} \rho_{\pi_{old}}(s) \sum_{a} \pi(a|s) a_{\pi_{old}}(a,s) \\ \text{subject to } \bar{D}_{KL}^{\rho_{\pi_{old}}}(\pi_{old},\pi) \leq \delta \end{split} \tag{11}$$

- We now make the following rewritings:
 - $\blacktriangleright \sum_{s} \rho_{\pi_{old}}[\ldots] \longrightarrow \frac{1}{1-\gamma} \mathbb{E}_{s \sim \rho_{\pi_{old}}}[\ldots]$
 - ▶ $a_{\pi_{old}} \longrightarrow q_{\pi_{old}}$ (only changes the objective by a constant)
 - $\succ \sum_{a} \pi(a|s) a_{\pi_{old}}(s,a) = \mathbb{E}_{a \sim q} \left[\frac{\pi(a|s)}{q(a|s)} a_{\pi_{old}}(s,a) \right] \ \forall s \in \mathcal{S} \text{ (important sampling)}$
- Problem (10) is then exactly equivalent to:

$$\max_{\pi} \mathbb{E}_{s \sim \rho_{\pi_{old}}, a \sim \pi_{old}} \left[\frac{\pi(a|s)}{\pi_{old}(a|s)} Q_{\pi_{old}}(s, a) \right]$$

subject to $\mathbb{E}_{s \sim \rho_{\pi_{old}}} \left[D_{KL}(\pi_{old}(.|s), \pi(.|s)) \right] \le \delta$ (12)

Sampled-Based Estimation of The Objective and Constraint I

 \bullet Approximate expectations by sample averages, and the Q values by empirical average:

$$\max_{\pi} \hat{L}_{\pi_{old}}(\pi) := \sum_{i=1}^{N} \frac{\pi(a_i|s_i)}{\pi_{old}(a_i|s_i)} \hat{Q}_{\pi_{old}}(s_i, a_i)$$

subject to
$$\sum_{i=1}^{N} [D_{KL}(\pi_{old}(.|s_i), \pi(.|s_i))] \le \delta$$

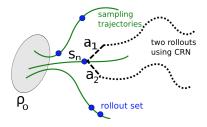
(13)

• Single path scheme: Standard Monte-Carlo estimation



Sampled-Based Estimation of The Objective and Constraint II

 \bullet Vine scheme: Evaluate the Q values independently for state-action pairs (s,a) encountered during various trajectories.



- Advantage:
 - Provides samples with much lower variance
- Drawbacks:
 - Requires more calls to the simulator
 - Requires to generate multiple trajectories from prescribed states

Natural Policy Gradient I

$$\max_{\theta} \mathbb{E}_{s \sim \rho_{\pi_{\theta_{old}}}, a \sim \pi_{\theta_{old}}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)} Q_{\pi_{\theta_{old}}}(s, a) \right]$$
subject to $\mathbb{E}_{s \sim \rho_{\pi_{\theta_{old}}}} \left[D_{KL}(\pi_{\theta_{old}}(.|s), \pi_{\theta}(.|s)) \right] \leq \delta$
(14)

• NPG approximates problem (14) by using a linear approximation to the objective and a quadratic approximation to the constraint around parameters θ_{old} , i.e.,

$$\begin{split} \max_{\theta} g \cdot (\theta - \theta_{old}) \\ \text{subject to } \frac{1}{2} (\theta_{old} - \theta)^T \bar{A}_{\theta_{old}} (\theta_{old} - \theta) \leq \delta, \\ \text{where } g \simeq \nabla_{\theta} \hat{L}_{\pi_{\theta_{old}}} (\theta) \Big|_{\theta = \theta_{old}} \text{ and} \\ (\bar{A}_{\theta_{old}})_{ij} = \left. \frac{\partial^2}{\partial \theta_i \partial \theta_j} \bar{D}_{KL}^{\rho_{\pi_{old}}} (\pi_{\theta_{old}}, \pi_{\theta}) \right|_{\theta = \theta_{old}} \\ \simeq \frac{1}{N} \sum_{i=1}^N \left. \frac{\partial^2}{\partial \theta_i \partial \theta_j} D_{KL} (\pi_{\theta_{old}} (\cdot | s_i), \pi_{\theta} (\cdot | s_i)) \right|_{\theta = \theta_{old}} \end{split}$$

is the average Fisher Information Matrix (FIM).

lions@epfl

Slide 18/ 28

Natural Policy Gradient II

$$\begin{aligned} \max_{\theta} g \cdot (\theta - \theta_{old}) \\ \text{subject to } \frac{1}{2} (\theta_{old} - \theta)^T \bar{A}_{\theta_{old}} (\theta_{old} - \theta) \leq \delta, \end{aligned} \tag{15}$$

• Problem (15) is a quadratic equation and can be solved analytically:

$$\theta^* = \theta_{old} + \sqrt{\frac{2\delta}{g^T \bar{A}_{\theta_{old}}^{-1} g}} \bar{A}_{\theta_{old}}^{-1} g$$

- Limitations of NPG:
 - Finding the inverse of A
 _{θold} is expensive
 - Given the search direction $\bar{A}_{\theta_{old}}^{-1}g$, the step size $\sqrt{\frac{2\delta}{g^T\bar{A}_{\theta_{old}}^{-1}g}}$ may not be optimal.

Practical Algorithm: TRPO

$$\max_{\theta} g \cdot (\theta - \theta_{old})$$

subject to $\frac{1}{2} (\theta_{old} - \theta)^T \bar{A}_{\theta_{old}} (\theta_{old} - \theta) \le \delta,$ (16)

- In order to solve problem (16), we repeat the following steps until convergence:
 - 1. Compute a search direction $s \simeq \bar{A}_{\theta_{old}}^{-1} g$ using conjugate gradient algorithm.
 - 2. Perform a line search in this direction, starting from proposed step $\sqrt{\frac{2\delta}{s^T \bar{A}_{\theta_{old}s}}}$.
 - 3. Update the policy parameters $\theta \leftarrow \theta + \beta s$, where, s, β are the resulting direction and step-size computed at steps 1,2 respectively.

tions@epfl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 28

TRPO Algorithm

TRPO [1]

Algorithm parameter: Initial policy parameters $\theta_0,$ KL divergence constraint parameter δ

for $k=0,1,2,\ldots\,$ do

Collect set of trajectories on policy π_{θ_k} Estimate Q values using single path or vine sampling scheme Use CG algorithm to obtain $s_k \simeq \bar{A}_{\theta_k}^{-1} g_k$

Estimate proposed step $\Delta_k \simeq \sqrt{\frac{2\delta}{s_k^T \bar{A}_{\theta,\tau}^{-1} s_k}} s_k.$

Perform backtracking line search with exponential decay, starting from Δ_k to obtain step-size β_k

Update the policy parameters:

$$\theta_{k+1} \leftarrow \theta_k + \beta_k s_k$$

end for

Drawbacks of TRPO

- Relatively complicated
- Not compatible with architecture involving noise (such as dropout) or parameter sharing
- Less sample efficient than methods trained using first-order optimizers such as Adam

• Question: Following similar ideas, can we design a simpler algorithm at least as performant as TRPO?

Proximal Policy Optimization (PPO) with Adaptive KL Penalty [4]

• Going back to penalized problem:

$$\max_{\theta} L_{\pi_{\theta_k}}(\pi_{\theta}) - C\bar{D}_{KL}^{\rho_{\pi_{\theta_k}}}(\pi_{\theta_k}, \pi_{\theta})$$

PPO with Adaptive KL Penalty [1]

Algorithm parameter: Initial policy parameters θ_0 , initial KL penalty β_0 , target KL-divergence δ .

```
for k = 0, 1, 2, ... do
Collect set of trajectories on policy \pi_{\theta_k}
Estimate Q values using single path or vine sampling scheme
Compute policy upate
```

$$\theta_{k+1} = \operatorname*{arg\,max}_{\theta} L_{\pi_{\theta_k}}(\pi_{\theta}) - \beta_k \bar{D}_{KL}^{\rho_{\pi_{\theta_k}}}(\pi_{\theta_k}, \pi_{\theta})$$

using Adam.
if
$$\bar{D}_{KL}^{\rho_{\pi_{\theta_{k}}}}(\pi_{\theta_{k}},\pi_{\theta_{k+1}}) \geq 1.5\delta$$
 then
 $\beta_{k+1} \leftarrow 2\beta_{k}$
else if $\bar{D}_{KL}^{\rho_{\pi_{\theta_{k}}}}(\pi_{\theta_{k}},\pi_{\theta_{k+1}}) \leq \frac{\delta}{1.5}$ then
 $\beta_{k+1} \leftarrow \frac{\beta_{k}}{2}$
end if
end for

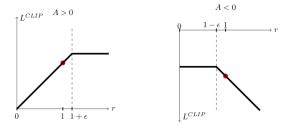
Proximal Policy Optimization (PPO) [4]

• PPO replaces the TRPO objective of equation (12)

$$L_{\pi_{old}}(\pi) = \mathbb{E}_{s \sim \rho_{\pi_{old}}, a \sim \pi_{old}} \left[\frac{\pi(a|s)}{\pi_{old}(a|s)} a_{\pi_{old}}(a,s) \right] \equiv L^{CPI}(\pi)$$

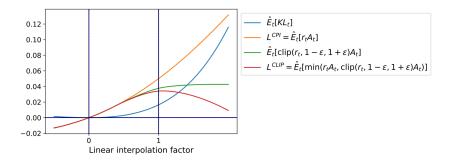
with the following clipped version (ϵ usually set to 0.2):

$$\begin{split} L^{CLIP}(\pi) &= \mathbb{E}_{s \sim \rho_{\pi_{old}}, a \sim \pi_{old}} \left[\min \left(\frac{\pi(a|s)}{\pi_{old}(a|s)} a_{\pi_{old}}(a,s), \right. \\ & \left. \mathsf{clip} \left(\frac{\pi(a|s)}{\pi_{old}(a|s)}, 1 - \epsilon, 1 + \epsilon \right) a_{\pi_{old}}(a,s) \right) \right] \end{split}$$



PPO Objective Function

• First policy update on the Hopper-v1 problem:



• PPO penalizes large deviation from the current policy directly inside the objective function

Slide 25/ 28

PPO Algorithm

PPO with Clipped Objective [1]

Algorithm parameter: Initial policy parameters θ_0 , clipping threshold ϵ .

for $k = 0, 1, 2, \dots$ do Collect set of trajectories on policy π_{θ_k} Estimate Q values using *single path* or *vine* sampling scheme Compute policy upate

$$\theta_{k+1} = \arg\max_{\theta} L_{\pi_{\theta_k}}^{CLIP}(\pi_{\theta})$$

using Adam. end for

References

[1] Joshua Achiam.

Advanced policy gradient methods, 2017.

[2] Sham Kakade and John Langford.

Approximately optimal approximate reinforcement learning.

In ICML, volume 2, pages 267-274, 2002.

 [3] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization.

In International Conference on Machine Learning, pages 1889–1897, 2015.

[4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Computing the Fisher-Vector Product

• Applying conjugate gradient algorithm in step 1 requires to perform matrix-vector multiplication with the FIM. We show here how to make this computation efficiently. • Suppose that the parametrized policy maps from the state s to distribution parameter vector $\mu_{\theta}(s)$, which parametrizes the distribution $\pi(a|s)$.

Let $A_{\theta_{old}}(s) = \frac{\partial^2}{\partial \theta_i \partial \theta_j} D_{KL}(\pi_{\theta_{old}}(\cdot|s), \pi_{\theta}(\cdot|s)) \Big|_{\theta = \theta_{old}}$ be the FIM of the policy at

state s. Then, $A_{\theta_{old}}(s)$ can be written as

$$A_{\theta_{old}}(s) = J^T M J$$

where $J := \frac{\partial \mu_{\theta}(s)}{\partial \theta}$ is the Jacobian of $\mu_{\theta}(s)$, and $M = \mathbb{E}\left[\left(\frac{\partial \log \pi_{\theta}(\cdot|s)}{\partial \mu_{\theta}(s)}\right) \left(\frac{\partial \log \pi_{\theta}(\cdot|s)}{\partial \mu_{\theta}(s)}\right)^{T} \middle| \theta = \theta_{old}\right]$ is the FIM of the distribution $\pi_{\theta}(\cdot|s)$ in terms of the parameter μ_{θ} (as opposed to the parameter θ), which has a simple form for most parametrized distributions of interest.

The Fisher-vector product can now be written as a function $y \to J^T M T y$. Multiplication by J^T and J can be performed by most automatic differentiation and neural network packages (multiplication by J^T is the well-known backprop operation), and the multiplication by M can be derived for the distribution of interest.