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I This lecture
1. Trust Region Policy Optimization
2. Proximal Policy Optimization

I Next lecture
1. Actor-Critic Methods for Deep RL
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Recommended Reading

I Schulman, John and Levine, Sergey and Abbeel, Pieter and Jordan, Michael and
Moritz, Philipp. Trust region policy optimization., International Conference on
Machine Learning, 2015.

I Schulman, John and Wolski, Filip and Dhariwal, Prafulla and Radford, Alec and
Klimov, Oleg. Proximal policy optimization algorithms, arXiv preprint, 2017.
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Policy Gradient Method

• Policy gradient methods (PGM):

I Parametrize a stochastic policy using parameter vector θ
I Define a performance measure J(θ) = Es0vπθ (s0)
I Maximize J over θ using Stochastic Gradient Descent:

θt+1 = θ + α∇̂J(θt)

• Goal of this lecture: Present two state-of-the-art practical algorithms based on PGM.
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Trust Region Policy Optimization

• Trust Region Policy Optimization (TRPO) [3]:

I Introduces a surrogate objective performance measure.

I Designs a theoretical update scheme which iteratively updates a policy in a way
that guarantees monotone improvement, i.e., ensures J(πt+1) ≥ J(πt).

I Approximates this theoretical scheme using optimization tools.
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TRPO: Preliminaries
Lemma
Given any two policies π, π̃,

J(π̃) = J(π) + Eπ̃

[
∞∑
t=0

γtaπ(St, At)

]
(1)

where aπ(s, a) = qπ(s, a)− vπ(s) is the advantage function.

Proof :
First note that aπ(s, a) = Es′∼p(s′|s,a)[r(s) + γvπ(s′)− vπ(s)]. Therefore,

Eπ̃

[
∞∑
t=0

γtaπ(St, At)

]
= Eπ̃

[
∞∑
t=0

γt(r(St) + γvπ(St+1)− vπ(St))

]

= Eπ̃

[
−vπ(s0) +

∞∑
t=0

γtr(St)

]

= −Es0 [vπ(s0)] + Eπ̃

[
∞∑
t=0

γtr(St)

]
= −J(π) + J(π̃)
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TRPO: Preliminaries

Equation (1) can be rewritten with a sum over states instead of time steps:

J(π̃) = J(π) +
∞∑
t=0

∑
s

P (St = s|π̃)
∑
a

π̃(a|s)γtaπ(a, s)

= J(π) +
∑
s

∞∑
t=0

γtP (St = s|π̃)
∑
a

π̃(a|s)aπ(a, s)

= J(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)aπ(a, s) (2)

where ρπ̃(s) =
∑∞

t=0 γ
tP (St = s|π̃) is the unnormalized discounted visitation

frequency.
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TRPO: Preliminaries

J(π̃) = J(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)aπ(a, s) (3)

• Equation (3) gives an alternative way of optimizing the performance J , by
maximizing the right hand side for any fixed policy π.

• However, the complex dependency of ρπ̃ on π̃ makes it difficult to optimize directly.
Instead, let’s introduced the following surrogate to J :

Lπ(π̃) = J(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)aπ(a, s) (4)

i.e. ρπ̃ is simply replaced by ρπ .

• It is easy to check that for any differentiable parametrized policy πθ and πθold ,

Lπθold
(πθold ) = J(πθold ) (5)

∇θLπθold (πθ)
∣∣
θ=θold

= ∇θJ(πθ)|θ=θold . (6)

⇒ a sufficiently small step πθold → π̃ that improves Lπθold will also improve J!
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Monotonic Improvement Guarantee for General Stochastic Policies

• Question: How big of a step to take?

Theorem
For any two stochastic policies π, π̃, we have

J(π̃) ≥ Lπ(π̃)− CDmaxKL (π, π̃) (7)

where DmaxKL (π, π̃) = maxsDKL (π(.|s)||π̃(.|s)), C = 4εγ
(1−γ)2 and

ε = maxs,a |Aπ(s, a)|.

Proof : on the board, or see [2, 3].

• Thanks to (5), we see that this upper bound becomes tight for π = π̃.
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Monotonic Improvement Guarantee for General Stochastic Policies

J(π̃) ≥ Lπ(π̃)− CDmaxKL (π, π̃)
J(πθold ) = Lπθold

(πθold )

• For any fixed policy π, maximizing the RHS of (7) necessary leads to a new policy
with better performance than with π, i.e.,

π̃∗ = arg max
π̃

Lπ(π̃)− CDmaxKL (π, π̃)⇒ J(π̃∗) ≥ J(π)

• To see this, let Mi(π) = Lπi (π)− CDmaxKL (πi, π). Then

J(πi+1) ≥Mi(πi+1) by (7)
J(πi) = Mi(πi) by (5), therefore,

J(πi+1)− J(πi) ≥Mi(πi+1)−Mi(πi).

Thus, by maximizing Mi at each iteration, we guarantee that the true objective J is
non-decreasing.
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Monotonic Improvement Guarantee for General Stochastic Policies

Algorithm 1 Policy iteration algorithm guaranteeing non-decreasing expected return
1: Initialize π0
2: for i=0,1,2,... until convergence do
3: Compute all advantage values Aπi (s, a).
4: Solve

πi+1 = arg max
π̃

Lπi (π̃)− CDmaxKL (πi, π̃), (8)

where C = 4εγ
(1−γ)2

5: end for

• Algorithm 1 is guaranteed to generate a monotonically improving sequence of
policies J(π0) ≤ J(π1) ≤ J(π2) ≤ ....
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Issues with Algorithm 1

• The theoretical constant turns out to be much too large in practice, leading to very
small updates, and is difficult to choose manually.

• Computation of Lπ requires knowledge of the advantage function Aπ .

• We must efficiently solve the optimization problem (8) for updating the policy.
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Replace Penalization by a Hard Trust Region Constraint

• Replace the penalization by a hard constraint on the KL divergence between the old
and the new policy, i.e., a trust region constraint:

max
π

Lπold (π)

subject to DmaxKL (πold, π) ≤ δ,
(9)

The upper bound δ on the maximum KL divergence turns out to be much less
problem dependent, and easier to tune.

• But: The number of constraint is equal to |S| !!

• Replace DmaxKL by the average KL divergence over all states:

max
π

Lπold (π)

subject to D̄ρπoldKL (πold, π) ≤ δ
(10)

where D̄ρπKL(π1, π2) = Es∼ρπ [DKL(π1(.|s), π2(.|s))]
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Recasting Problem (10)

• Expand Lπold (π) in problem (10):

max
π

∑
s

ρπold (s)
∑
a

π(a|s)aπold (a, s)

subject to D̄ρπoldKL (πold, π) ≤ δ

(11)

• We now make the following rewritings:
I
∑

s
ρπold [. . .] −→ 1

1−γ Es∼ρπold [. . .]
I aπold −→ qπold (only changes the objective by a constant)
I
∑

a
π(a|s)aπold (s, a) = Ea∼q

[
π(a|s)
q(a|s) aπold (s, a)

]
∀s ∈ S (important sampling)

• Problem (10) is then exactly equivalent to:

max
π
Es∼ρπold ,a∼πold

[
π(a|s)
πold(a|s)

Qπold (s, a)
]

subject to Es∼ρπold [DKL(πold(.|s), π(.|s))] ≤ δ
(12)
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Sampled-Based Estimation of The Objective and Constraint I
• Approximate expectations by sample averages, and the Q values by empirical
average:

max
π

L̂πold (π) :=
N∑
i=1

π(ai|si)
πold(ai|si)

Q̂πold (si, ai)

subject to
N∑
i=1

[DKL(πold(.|si), π(.|si))] ≤ δ

(13)

• Single path scheme: Standard Monte-Carlo estimation
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Sampled-Based Estimation of The Objective and Constraint II

• Vine scheme: Evaluate the Q values independently for state-action pairs (s, a)
encountered during various trajectories.

• Advantage:
I Provides samples with much lower variance

• Drawbacks:
I Requires more calls to the simulator
I Requires to generate multiple trajectories from prescribed states

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 28



Natural Policy Gradient I

max
θ
Es∼ρπθold

,a∼πθold

[
πθ(a|s)
πθold (a|s)

Qπθold
(s, a)

]
subject to Es∼ρπθold [DKL(πθold (.|s), πθ(.|s))] ≤ δ

(14)

• NPG approximates problem (14) by using a linear approximation to the objective
and a quadratic approximation to the constraint around parameters θold, i.e.,

max
θ

g · (θ − θold)

subject to
1
2

(θold − θ)T Āθold (θold − θ) ≤ δ,

where g ' ∇θL̂πθold (θ)
∣∣
θ=θold

and

(Āθold )ij =
∂2

∂θi∂θj
D̄
ρπold
KL (πθold , πθ)

∣∣∣∣
θ=θold

'
1
N

N∑
i=1

∂2

∂θi∂θj
DKL(πθold (·|si), πθ(·|si))

∣∣∣∣
θ=θold

is the average Fisher Information Matrix (FIM).
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Natural Policy Gradient II

max
θ

g · (θ − θold)

subject to
1
2

(θold − θ)T Āθold (θold − θ) ≤ δ,
(15)

• Problem (15) is a quadratic equation and can be solved analytically:

θ∗ = θold +

√
2δ

gT Ā−1
θold

g
Ā−1
θold

g

• Limitations of NPG:
I Finding the inverse of Āθold is expensive

I Given the search direction Ā−1
θold

g, the step size
√

2δ
gT Ā−1

θold
g
may not be optimal.
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Practical Algorithm: TRPO

max
θ

g · (θ − θold)

subject to
1
2

(θold − θ)T Āθold (θold − θ) ≤ δ,
(16)

• In order to solve problem (16), we repeat the following steps until convergence:

1. Compute a search direction s ' Ā−1
θold

g using conjugate gradient algorithm.

2. Perform a line search in this direction, starting from proposed step
√

2δ
sT Āθold

s
.

3. Update the policy parameters θ ← θ + βs, where, s, β are the resulting direction
and step-size computed at steps 1,2 respectively.
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TRPO Algorithm

TRPO [1]
Algorithm parameter: Initial policy parameters θ0, KL divergence constraint
parameter δ

for k = 0,1,2,. . . do
Collect set of trajectories on policy πθk
Estimate Q values using single path or vine sampling scheme
Use CG algorithm to obtain sk ' Ā−1

θk
gk

Estimate proposed step ∆k '
√

2δ
sT
k
Ā−1
θk
sk
sk.

Perform backtracking line search with exponential decay, starting from ∆k to
obtain step-size βk
Update the policy parameters:

θk+1 ← θk + βksk

end for
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Drawbacks of TRPO

• Relatively complicated

• Not compatible with architecture involving noise (such as dropout) or parameter
sharing

• Less sample efficient than methods trained using first-order optimizers such as Adam

• Question: Following similar ideas, can we design a simpler algorithm at least as
performant as TRPO?
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Proximal Policy Optimization (PPO) with Adaptive KL Penalty [4]
• Going back to penalized problem:

max
θ

Lπθk
(πθ)− CD̄

ρπθk
KL (πθk , πθ)

PPO with Adaptive KL Penalty [1]
Algorithm parameter: Initial policy parameters θ0, initial KL penalty β0, target
KL-divergence δ.

for k = 0,1,2,. . . do
Collect set of trajectories on policy πθk
Estimate Q values using single path or vine sampling scheme
Compute policy upate

θk+1 = arg max
θ

Lπθk
(πθ)− βkD̄

ρπθk
KL (πθk , πθ)

using Adam.
if D̄

ρπθk
KL (πθk , πθk+1 ) ≥ 1.5δ then

βk+1 ← 2βk
else if D̄

ρπθk
KL (πθk , πθk+1 ) ≤ δ

1.5 then
βk+1 ← βk

2
end if

end for
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Proximal Policy Optimization (PPO) [4]

• PPO replaces the TRPO objective of equation (12)

Lπold (π) = Es∼ρπold ,a∼πold
[
π(a|s)
πold(a|s)

aπold (a, s)
]
≡ LCPI(π)

with the following clipped version (ε usually set to 0.2):

LCLIP (π) = Es∼ρπold ,a∼πold
[
min
(

π(a|s)
πold(a|s)

aπold (a, s),

clip
(

π(a|s)
πold(a|s)

, 1− ε, 1 + ε

)
aπold (a, s)

)]
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PPO Objective Function

• First policy update on the Hopper-v1 problem:

• PPO penalizes large deviation from the current policy directly inside the objective
function
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PPO Algorithm

PPO with Clipped Objective [1]
Algorithm parameter: Initial policy parameters θ0, clipping threshold ε.

for k = 0,1,2,. . . do
Collect set of trajectories on policy πθk
Estimate Q values using single path or vine sampling scheme
Compute policy upate

θk+1 = arg max
θ

LCLIPπθk
(πθ)

using Adam.
end for
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Computing the Fisher-Vector Product

• Applying conjugate gradient algorithm in step 1 requires to perform matrix-vector
multiplication with the FIM. We show here how to make this computation efficiently.
• Suppose that the parametrized policy maps from the state s to distribution
parameter vector µθ(s), which parametrizes the distribution π(a|s).

Let Aθold (s) = ∂2

∂θi∂θj
DKL(πθold (·|s), πθ(·|s))

∣∣∣
θ=θold

be the FIM of the policy at

state s. Then, Aθold (s) can be written as

Aθold (s) = JTMJ

where J := ∂µθ(s)
∂θ

is the Jacobian of µθ(s), and

M = E
[(

∂ logπθ(·|s)
∂µθ(s)

) (
∂ logπθ(·|s)
∂µθ(s)

)T ∣∣∣ θ = θold

]
is the FIM of the distribution

πθ(·|s) in terms of the parameter µθ (as opposed to the parameter θ), which has a
simple form for most parametrized distributions of interest.

The Fisher-vector product can now be written as a function y → JTMTy.
Multiplication by JT and J can be performed by most automatic differentiation and
neural network packages (multiplication by JT is the well-known backprop operation),
and the multiplication by M can be derived for the distribution of interest.
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