Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 9: Actor-Critic Methods for Deep RL

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2020)

License Information for Reinforcement Learning Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

This class:

- $1. \ \mbox{Actor-Critic Methods}$ for Deep RL
- Next class:
 - 1. Inverse Reinforcement Learning

Recommended reading

- I. Grondman, et al, A survey of actor-critic reinforcement learning: Standard and natural policy gradients, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42.6 (2012): 1291-1307.
- Chapter 13 in S. Sutton, and G. Barto, *Reinforcement Learning: An Introduction*, MIT Press, 2018.

Motivation

Motivation

Monte-Carlo policy gradient method suffers from high variance. How can we speed up learning? Learn the value function along with the policy!

Recap

- Discounted return: $R_t = \sum_{\tau=t}^{\infty} \gamma^{\tau-t} r_{\tau}$
- State-action value function: $Q^{\pi}(s, a) = \mathbb{E}\left[R_t \mid s_t = s, a_t = a, \pi\right]$
- State value function: $V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[Q^{\pi}(s, a) \right]$
- Advantage function: $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$
- Optimal state-action value function: $Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a)$
- Optimal policy: $\pi^*(s) = \arg\max_{a'} Q^*(s,a')$
- Optimal state value function: $V^*(s) = \max_a Q^*(s, a)$
- $\bullet \text{ Bellman expectation: } Q^{\pi}(s,a) = \mathbb{E}_{s'}\left[r + \gamma \mathbb{E}_{a' \sim \pi(s')}\left[Q^{\pi}(s',a')\right] \mid s,a,\pi\right]$
- Bellman optimality: $Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a\right]$

Three Approaches to RL

- Policy based learning (actor-only methods)
- Value based learning (critic-only methods)
- Actor-Critic learning

Three Approaches to RL

- Actor-only Methods
 - work with a parameterized family of policies
 - explicitly learn policy $\pi_{\theta}(a \mid s)$ that implicitly maximize reward over all policies
 - a spectrum of continuous actions can be generated
 - policy gradient methods suffer from high variance in the estimates of the gradient
- Critic-only Methods
 - use temporal difference learning or Bellman optimality relationship
 - have a lower variance in the estimates of expected returns
 - derive a policy by selecting greedy actions

 - undermines the ability of using continuous actions

Three Approaches to RL

- Actor-Critic Methods
 - combine the advantages of actor-only and critic-only methods
 - parameterized actor: computing continuous actions without the need for optimization procedures on a value function
 - critic: supplies the actor with low-variance knowledge of the performance
 - lower variance is traded for a larger bias at the start of learning when the critic's estimates are far from accurate
 - actor-critic methods usually have good convergence properties, in contrast to critic-only methods [4]

Actor-Critic Architectures

- Actor-critic algorithms maintain two sets of parameters:
 - \blacktriangleright critic parameters w to approximate action-value function under current policy
 - actor (policy) parameters θ
- Actor-critic algorithms follow an approximate policy gradient:
 - critic updates Q-function parameters w like in policy evaluation
 - actor updates policy gradient θ in direction suggested by critic

Stochastic On-Policy Search

- Parametrize a stochastic policy $\pi_{\theta}: S \to \Delta A$
- Notation: the parameter θ would be omitted for the policy π_{θ} when the policy is present in the subscript or superscript of other functions.
- The on-policy objective function:

$$J(\theta) = V^{\pi}(s_0)$$

= $\sum_{s \in S} d^{\pi}(s) V^{\pi}(s)$
= $\sum_{s \in S} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) Q^{\pi}(s, a)$

where

- $d^{\pi}(s)$ is the stationary distribution of Markov chain for π_{θ}
- $d^{\pi}(s) = \lim_{t \to \infty} \mathbb{P}\left[S_t = s \mid s_0, \pi_{\theta}\right]$ is the probability that $S_t = s$ when starting from s_0 and following policy π_{θ} for t steps.

Stochastic On-Policy Gradient Theorem

Theorem

For any differentiable policy $\pi_{\theta}(a \mid s)$, we have

$$\begin{aligned} \mathcal{T}_{\theta}J\left(\theta\right) &= \nabla_{\theta}\sum_{s\in\mathcal{S}}d^{\pi}\left(s\right)\sum_{a\in\mathcal{A}}Q^{\pi}\left(s,a\right)\pi_{\theta}\left(a\mid s\right) \\ &\propto \sum_{s\in\mathcal{S}}d^{\pi}\left(s\right)\sum_{a\in\mathcal{A}}Q^{\pi}\left(s,a\right)\nabla_{\theta}\pi_{\theta}\left(a\mid s\right) \\ &= \sum_{s\in\mathcal{S}}d^{\pi}\left(s\right)\sum_{a\in\mathcal{A}}\pi_{\theta}\left(a\mid s\right)Q^{\pi}\left(s,a\right)\frac{\nabla_{\theta}\pi_{\theta}\left(a\mid s\right)}{\pi_{\theta}\left(a\mid s\right)} \\ &= \mathbb{E}_{s\sim d^{\pi},a\sim\pi_{\theta}}\left[Q^{\pi}\left(s,a\right)\nabla_{\theta}\log\pi_{\theta}\left(a\mid s\right)\right] \\ &= \mathbb{E}_{\pi}\left[Q^{\pi}\left(s,a\right)\nabla_{\theta}\log\pi_{\theta}\left(a\mid s\right)\right] \end{aligned}$$

Stochastic Off-Policy Search

- Advantages of off-policy methods:
 - 1. The off-policy approach does not require full trajectories and can reuse any past episodes (experience replay) for much better sample efficiency.
 - The sample collection follows a behavior policy different from the target policy, bringing better exploration.
- The off-policy objective function (with behavior policy $\beta(a \mid s)$):

$$J\left(\theta\right) = \sum_{s \in \mathcal{S}} d^{\beta}\left(s\right) \sum_{a \in \mathcal{A}} Q^{\pi}\left(s,a\right) \pi_{\theta}\left(a \mid s\right) = \mathbb{E}_{s \sim d^{\beta}} \left[\sum_{a \in \mathcal{A}} Q^{\pi}\left(s,a\right) \pi_{\theta}\left(a \mid s\right) \right],$$

where

$$d^{\beta}(s) = \lim_{t \to \infty} \mathbb{P}[S_t = s \mid s_0, \beta]$$

• Q^{π} is the action-value function estimated with regard to the target policy π_{θ}

lions@epfl The

Stochastic Off-Policy Gradient Theorem

$$\begin{aligned} \nabla_{\theta} J_{\beta} \left(\theta \right) &= \nabla_{\theta} \mathbb{E}_{s \sim d^{\beta}} \left[\sum_{a \in \mathcal{A}} Q^{\pi} \left(s, a \right) \pi_{\theta} \left(a \mid s \right) \right] \\ &= \mathbb{E}_{s \sim d^{\beta}} \left[\sum_{a \in \mathcal{A}} Q^{\pi} \left(s, a \right) \nabla_{\theta} \pi_{\theta} \left(a \mid s \right) + \nabla_{\theta} Q^{\pi} \left(s, a \right) \pi_{\theta} \left(a \mid s \right) \right] \\ &\approx \mathbb{E}_{s \sim d^{\beta}} \left[\sum_{a \in \mathcal{A}} Q^{\pi} \left(s, a \right) \nabla_{\theta} \pi_{\theta} \left(a \mid s \right) \right] \\ &= \sum_{s \in \mathcal{S}} d^{\beta} \left(s \right) \sum_{a \in \mathcal{A}} \beta \left(a \mid s \right) \frac{\pi_{\theta} \left(a \mid s \right)}{\beta \left(a \mid s \right)} Q^{\pi} \left(s, a \right) \frac{\nabla_{\theta} \pi_{\theta} \left(a \mid s \right)}{\pi_{\theta} \left(a \mid s \right)} \\ &= \mathbb{E}_{s \sim d^{\beta}, a \sim \beta} \left[\frac{\pi_{\theta} \left(a \mid s \right)}{\beta \left(a \mid s \right)} Q^{\pi} \left(s, a \right) \nabla_{\theta} \log \pi_{\theta} \left(a \mid s \right) \right] \\ &= \mathbb{E}_{\beta} \left[\frac{\pi_{\theta} \left(a \mid s \right)}{\beta \left(a \mid s \right)} Q^{\pi} \left(s, a \right) \nabla_{\theta} \log \pi_{\theta} \left(a \mid s \right) \right] \end{aligned}$$

• This is a good approximation since it can preserve the set of local optima to which gradient ascent converges [1].

REINFORCE (Monte-Carlo Policy Gradient)

- Vanilla policy gradient update has no bias but high variance.
- Relies on an estimated return by Monte-Carlo methods using episode samples to update the policy parameter θ .
- Since $Q^{\pi}(S_t, A_t) = \mathbb{E}_{\pi}[G_t \mid S_t, A_t]$, we have

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} \left[Q^{\pi}(s, a) \nabla_{\theta} \log \pi_{\theta}(a \mid s) \right]$$
$$= \mathbb{E}_{\pi} \left[G_t \nabla_{\theta} \log \pi_{\theta} \left(A_t \mid S_t \right) \right]$$

• It relies on a full trajectory and that's why it is a Monte-Carlo method.

REINFORCE: Monte Carlo Policy Gradient [7]

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π^*

Algorithm parameter: step size $\alpha > 0$ Initialize policy parameter $\theta \in \mathbb{R}^d$ for each episode do Generate an episode $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$ following $\pi(\cdot | \cdot, \theta)$ for each step of the episode $t = 0, 1, \dots, T-1$ do $G \leftarrow \sum_{k=t+1}^T \gamma^{k-t-1} R_k$ $\theta \leftarrow \theta + \alpha \gamma^t G \frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)}$ end for end for

• The use of stochastic gradient method ensures the convergence to a local optimum when choosing a decreasing step α_t such that $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$.

lions@epfl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/39 EPFL

Stochastic Actor-Critic Algorithms

- \bullet An actor adjusts the parameters θ of the stochastic policy $\pi_{\theta}\left(s\right)$ by stochastic gradient ascent
- A critic estimates the action-value function $Q^w\left(s,a\right) \approx Q^{\pi}\left(s,a\right)$ using an appropriate policy evaluation algorithm such as temporal-difference learning.

Compatible Function Approximation: Bias in AC

- Approximating the policy gradient introduces bias
- A biased policy gradient may not find the right solution
- Luckily, if we choose value function approximation carefully, then we can avoid bias
- If the following two conditions are satisfied:
 - 1. Value function approximator is compatible to the policy

$$\nabla_{w} Q^{w} (s, a) = \nabla_{\theta} \log \pi_{\theta} (a \mid s)$$

2. Value function parameters w minimize the mean-squared error

$$\nabla_w \mathbb{E}_{s \sim d^{\pi}, a \sim \pi_{\theta}} \left[(Q^w(s, a) - Q^{\pi}(s, a))^2 \right] = 0$$

• Then the policy gradient is without bias [6]:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim d^{\pi}, a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta} \left(a \mid s \right) Q^{w}(s, a) \right]$$

lions@epfl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 39

Action-Value Actor-Critic (QAC)

Action-Value Actor-Critic Algorithm

Algorithm parameters: learning rates $\alpha_w, \alpha_\theta > 0$. Initialize s, θ, w at random; sample $a \sim \pi_\theta (a \mid s)$. for $t = 0, 1, \ldots, T$ do Sample reward $r_t \sim R(s, a)$ and next state $s' \sim P(s' \mid s, a)$ Then sample the next action $a' \sim \pi_\theta (a' \mid s')$ Update the policy parameters:

 $\theta \leftarrow \theta + \alpha_{\theta} Q^{w}(s, a) \nabla_{\theta} \log \pi_{\theta}(a \mid s)$

Compute the correction (TD error) for action-value at time t:

$$\delta_t = r_t + \gamma Q^w \left(s', a' \right) - Q^w \left(s, a \right)$$

Use it to update the parameters of action-value function:

$$w \leftarrow w + \alpha_w \delta_t \nabla_w Q^w(s, a)$$

end for

Advantage Actor Critic (AAC or A2C)

• In this critic Advantage value function is used:

$$A^{\pi_{\theta}}(s,a) = Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$$

• The advantage function can significantly reduce variance of policy gradient

• So the critic should really estimate the advantage function, for instance, estimating both V(s) and Q using two function approximators and two parameter vectors:

$$V^{\pi_{\theta}}(s) \approx V^{v}(s)$$

$$Q^{\pi_{\theta}}(s,a) \approx Q^{w}(s,a)$$

$$A(s,a) = Q^{w}(s,a) - V^{v}(s)$$

And updating both value functions by e.g. TD learning

Policy Gradient Method with Deterministic Policy

- Deterministic policy parametrization $\mu_{ heta}: \mathcal{S}
 ightarrow \mathcal{A}$
- The on-policy objective function:

$$J(\mu_{\theta}) = \int_{\mathcal{S}} d^{\mu}(s) Q^{\mu}(s, \mu_{\theta}(s)) = \mathbb{E}_{s \sim d^{\mu}} \left[Q^{\mu}(s, \mu_{\theta}(s)) \right]$$

• In continuous action spaces, greedy policy improvement becomes problematic, requiring a global maximisation at every step.

• Instead, a simple and computationally attractive alternative is to move the policy in the direction of the gradient of Q, rather than globally maximising Q.

• Specifically, for each visited state s, the policy parameters θ^{k+1} are updated in proportion to the gradient $\nabla_{\theta}Q^{\mu_k}(s, \mu_{\theta}(s))$:

$$\begin{aligned} \theta^{k+1} &= \theta^k + \alpha \mathbb{E}_{s \sim d^{\mu^k}} \left[\nabla_{\theta} Q^{\mu_k} \left(s, \mu_{\theta}(s) \right) \right] \\ &= \theta^k + \alpha \mathbb{E}_{s \sim d^{\mu^k}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_a Q^{\mu^k}(s, a) |_{a = \mu_{\theta}(s)} \right] \end{aligned}$$

lions@epfl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 39

2PFL

Policy Gradient Method with Deterministic Policy

Theorem (on-policy)

For any differentiable policy μ_{θ} , we have

$$\nabla_{\theta} J(\mu_{\theta}) = \mathbb{E}_{s \sim d^{\mu}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s, a) |_{a = \mu_{\theta}(s)} \right],$$

where $d^{\mu_{\theta}}$ is the discounted state visitation frequency under policy μ_{θ} .

Theorem (relationship with stochastic policy gradient)

Consider a stochastic policy $\pi_{\mu_{\theta},\sigma}$ such that $\pi_{\mu_{\theta},\sigma}(a|s) = \nu_{\sigma}(\mu_{\theta}(s), a)$ where σ is a parameter controlling the variance. Then under some regularity assumptions over ν_{σ} and the MDP, we have

$$\lim_{\sigma \to 0^+} \nabla J(\pi_{\mu_{\theta},\sigma}) = \nabla J(\mu_{\theta}).$$

Deterministic Actor-Critic Algorithms

• On-Policy Deterministic Actor-Critic (SARSA updates)

$$\delta_t = r_t + \gamma Q^w(s_{t+1}, a_{t+1}) - Q^w(s_t, a_t)$$
$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q^w(s_t, a_t)$$
$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu_\theta(s_t) \nabla_a Q^w(s_t, a)|_{a = \mu_\theta(s_t)}$$

• The off-policy performance objective:

$$J_{\beta}\left(\mu_{\theta}\right) = \int_{\mathcal{S}} d^{\beta}(s) V^{\mu}\left(s\right) = \int_{\mathcal{S}} d^{\beta}(s) Q^{\mu}\left(s, \mu_{\theta}(s)\right) = \mathbb{E}_{s \sim d^{\beta}}\left[Q^{\mu}\left(s, \mu_{\theta}(s)\right)\right]$$

• The off-policy gradient:

$$\nabla_{\theta} J_{\beta}(\mu_{\theta}) \approx \mathbb{E}_{s \sim d^{\beta}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s, a) |_{a = \mu_{\theta}(s)} \right]$$

Off-Policy Deterministic Actor-Critic (Q-learning updates)

$$\delta_t = r_t + \gamma Q^w(s_{t+1}, \mu_\theta(s_{t+1})) - Q^w(s_t, a_t)$$
$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q^w(s_t, a_t)$$
$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu_\theta(s_t) \nabla_a Q^w(s_t, a_t) | a = \mu_\theta(s)$$

Compatible Function Approximation

• We find a critic $Q^w(s, a)$ such that the gradient $\nabla_a Q^\mu(s, a)$ can be replaced by $\nabla_a Q^w(s, a)$, without affecting the deterministic policy gradient.

Theorem

A function approximator $Q^w(s, a)$ is compatible with a deterministic policy $\mu_{\theta}(s)$, $\nabla_{\theta} J_{\beta}(\theta) = \mathbb{E} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_a Q^w(s, a) |_{a = \mu_{\theta}(s)} \right]$, if

1. $\nabla_a Q^w(s,a)|_{a=\mu_\theta(s)} = \nabla_\theta \mu_\theta(s)^\top w$ and

2. w minimises the mean-squared error, $MSE(\theta, w) = \mathbb{E}\left[\epsilon(s; \theta, w)^{\top} \epsilon(s; \theta, w)\right]$ where $\epsilon(s; \theta, w) = \nabla_a Q^w(s, a)|_{a=\mu_{\theta}(s)} - \nabla_a Q^{\mu}(s, a)|_{a=\mu_{\theta}(s)}$

 \bullet For any deterministic policy $\mu_{\theta}(s),$ there always exists a compatible function approximator of the form

$$Q^w(s,a) = (a - \mu_\theta(s))^\top \nabla_\theta \mu_\theta(s)^\top w + V^v(s),$$

where $V^{\boldsymbol{v}}(s)$ may be any differentiable baseline function that is independent of the action $\boldsymbol{a}.$

DDPG: Deep Deterministic Policy Gradient [5]

- DDPG is an extension of Q-learning for continuous action spaces.
- Therefore, it is an off-policy algorithm (we can use ER!)
- It is also an actor-critic algorithm (has networks Q_{ϕ} and π_{θ})
- Uses Q and π target networks for stability.

lions@epfl

- Differently from other critic algorithms, policy is deterministic
- Noise added for exploration: $a_t = \mu_{\theta}(s_t) + \xi$, where $\xi \sim \mathcal{N}(0, \sigma I)$
- Q_{ϕ} network is trained using standard loss function:

$$L(\phi, \mathcal{D}) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}} \left[\left(Q_{\phi}(s, a) - \left\{ r + \gamma Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s')) \right\} \right)^2 \right]$$

• As action is deterministic and continuous (NN), we can easily follow the gradient in policy network to increase future reward:

$$\nabla_{\theta} \mathop{\mathbb{E}}_{s \sim \mathcal{D}} \left[Q_{\phi}(s, \mu_{\theta}(s)) \right] \; \approx \; \frac{1}{N} \sum \nabla_{a} Q_{\phi}(s, a) \nabla_{\theta} \mu_{\theta}(s)$$

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 39

DDPG algorithm [5]

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ . Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$ Initialize replay buffer Rfor episode = 1, M do Initialize a random process \mathcal{N} for action exploration Receive initial observation state s_1 for t = 1, T do Select action $a_t = \mu(s_t|\theta^\mu) + \mathcal{N}_t$ according to the current policy and exploration noise Execute action a_t and observe reward r_t and observe new state s_{t+1} Store transition (s_t, a_t, r_t, s_{t+1}) in RSample a random minibatch of \mathcal{N} transitions (s_i, a_i, r_i, s_{i+1}) from RSet $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2$ Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q}) |_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) |_{s=\mu(s_{i})} \nabla_{\theta^{\mu}} \nabla_{\theta^{\mu}} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) |_{s=\mu(s_{i})} \nabla_{\theta^{\mu}} \nabla_{\theta^{\mu}} \nabla_{\theta^{\mu}} \nabla_{\theta^{\mu}} \nabla_{\theta^{\mu}} \nabla_{$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau) \theta^{Q'} \theta^{\mu'} \leftarrow \tau \theta^\mu + (1 - \tau) \theta^{\mu'}$$

end for end for

TD3: Twin Delayed DDPG [2]

- DDPG brittle with respect to hyperparameters and other kinds of tuning.
- TD3 is an off-policy algorithm.
- TD3 can only be used for environments with continuous action spaces.
- Similar to DDPG but with the following changes:
 - 1. *Clipped action exploration or target policy smoothing*: noise added like DDPG but noise bounded to fixed range

$$a'(s') = \operatorname{clip}\left(\mu_{ heta_{\operatorname{targ}}}(s') + \operatorname{clip}\left(\epsilon, -c, c\right), a_{\operatorname{Low}}, a_{\operatorname{High}}\right), \quad \epsilon \sim \mathcal{N}(0, \sigma)$$

2. *Pessimistic Double-Q Learning*: It uses two (twin) Q networks and uses the pessimistic one for current state for updating the network

$$L(\phi_i, \mathcal{D}) = \mathbb{E}_{(s,a,r,s')\sim\mathcal{D}}\left[\left(Q_{\phi_i}(s,a) - \left\{r + \gamma \min_{i=1,2} Q_{\phi_{i,\text{targ}}}(s',a'(s'))\right\}\right)^2\right]$$

3. *Delayed Policy Updates*: Updates of Critic are more frequent than of policy (e.g. 2 or 3 times)

TD3 algorithm [2]

Algorithm 1 TD3

Initialize critic networks $Q_{\theta_1}, Q_{\theta_2}$, and actor network π_{ϕ} with random parameters θ_1, θ_2, ϕ Initialize target networks $\theta'_1 \leftarrow \theta_1, \theta'_2 \leftarrow \theta_2, \phi' \leftarrow \phi$ Initialize replay buffer \mathcal{B} for t = 1 to T do Select action with exploration noise $a \sim \pi_{\phi}(s) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma)$ and observe reward r and new state s'Store transition tuple (s, a, r, s') in \mathcal{B} Sample mini-batch of N transitions (s, a, r, s') from \mathcal{B} $\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon, \quad \epsilon \sim \operatorname{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c)$ $y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})$ Update critics $\theta_i \leftarrow \operatorname{argmin}_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$ if $t \mod d$ then Update ϕ by the deterministic policy gradient:

$$\begin{split} \nabla_{\phi}J(\phi) &= N^{-1} \sum \nabla_{a}Q_{\theta_{1}}(s,a)|_{a=\pi_{\phi}(s)} \nabla_{\phi}\pi_{\phi}(s) \\ \text{Update target networks:} \\ \theta'_{i} \leftarrow \tau \theta_{i} + (1-\tau)\theta'_{i} \\ \phi' \leftarrow \tau \phi + (1-\tau)\phi' \\ \text{end if} \\ \text{end for} \end{split}$$

lions@epfl

EPFL

SAC: Soft Actor Critic [3]

• Policy Entropy-regularized: we will look for *maximum entropy* policies with given data (in SAC we go back to stochastic π).

$$\mathcal{H}\left(\pi(\cdot \mid s)\right) = \mathbb{E}_{a \sim \pi(s)}\left[-\log \pi(a \mid s)\right]$$

• So we search for policy:

$$\pi^* = \arg \max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t \left\{ R(s_{t+1}) + \alpha \mathcal{H}\left(\pi(\cdot \mid s_t) \right) \right\} \right]$$

where α is the trade-off between reward and entropy.

- Entropy enforces exploration, so no need to add noise to actions.
- \bullet Usually α decreases during learning and is disabled to test performance.

SAC: Soft Actor Critic [3]

• Let's define value functions in this case:

$$V^{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \left\{ R(s_{t+1}) + \alpha \mathcal{H}\left(\pi(\cdot \mid s_{t})\right) \right\} \left| s_{0} = s \right] \right]$$
$$Q^{\pi}(s,a) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t+1}) + \alpha \sum_{t=1}^{\infty} \gamma^{t} \mathcal{H}\left(\pi(\cdot \mid s_{t})\right) \left| s_{0} = s, a_{0} = a \right]$$

• So Bellman equations can be written as:

$$V^{\pi}(s) = \underset{\tau \sim \pi}{\mathbb{E}} \left[Q^{\pi}(s, a) + \alpha \mathcal{H}\left(\pi(\cdot \mid s)\right) \right]$$
$$Q^{\pi}(s, a) = \underset{s' \sim P, a' \sim \pi}{\mathbb{E}} \left[R(s, a, s') + \gamma \left\{ Q^{\pi}(s', a') + \alpha \mathcal{H}\left(\pi(\cdot \mid s')\right) \right\} \right]$$
$$= \underset{s' \sim P}{\mathbb{E}} \left[R(s, a, s') + \gamma V^{\pi}(s') \right]$$

SAC: Soft Actor Critic [3]

- Architecture: Networks and loss functions for each one:
 - Q-value functions: $Q_{\theta_1}(s, a)$, $Q_{\theta_2}(s, a)$ (twin like TD3)

$$L(\theta_i, \mathcal{D}) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}} \left[\left(Q_{\theta_i}(s, a) - \left\{ r + \gamma V_{\psi_{\text{targ}}}(s') \right\} \right)^2 \right]$$

▶ Value functions $V_{\psi}(s)$, $V_{\psi_{\text{targ}}}(s)$

$$L(\psi, \mathcal{D}) = \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_{\phi}} \left[\left(V_{\psi}(s) - \left\{ \min_{i=1,2} Q_{\theta_{i}}(s, a) - \alpha \log \pi_{\phi}(a \mid s) \right\} \right)^{2} \right]$$

• Policy $\pi_{\phi}(a \mid s)$. Maximize

$$\mathop{\mathbb{E}}_{a \sim \pi} \left[Q^{\pi}(s, a) - \alpha \log \pi(a \mid s) \right]$$

which maximize V value function ... but how to compute gradients?

Reparametrization Trick

• Problematic because in ∇_{ϕ} , expectation follow stochastic π_{ϕ} .

$$\mathbb{E}_{a \sim \pi_{\phi}} \left[Q^{\pi_{\phi}}(s, a) - \alpha \log \pi_{\phi}(a \mid s) \right]$$

• Use a reparametrizarion trick. It can be done when we define the stochastic π_ϕ as Gaussian by adding noise to the action:

$$\tilde{a}_{\phi}(s,\xi) = \tanh\left(\mu_{\phi}(s) + \sigma_{\phi}(s)\odot\xi\right), \quad \xi \sim \mathcal{N}\left(0,I\right)$$

• Now we can rewrite the term as:

$$\mathop{\mathbb{E}}_{a \sim \pi_{\phi}} \left[Q^{\pi_{\phi}}(s, a) - \alpha \log \pi_{\phi}(a \mid s) \right] = \mathop{\mathbb{E}}_{\xi \sim \mathcal{N}} \left[Q^{\pi_{\phi}}(s, \tilde{a}_{\phi}(s, \xi)) - \alpha \log \pi_{\phi}(\tilde{a}_{\phi}(s, \xi) \mid s) \right]$$

• Now we can optimize the policy according to

$$\max_{\phi} \mathop{\mathbb{E}}_{s \sim \mathcal{D}, \xi \sim \mathcal{N}} \left[Q_{\theta_1}(s, \tilde{a}_{\phi}(s, \xi)) - \alpha \log \pi_{\phi}(\tilde{a}_{\phi}(s, \xi) \mid s) \right]$$

Soft Actor Critic Algorithm

Algorithm 1 Soft Actor-Critic Initialize parameter vectors ψ , $\bar{\psi}$, θ , ϕ . for each iteration do for each environment step do $\mathbf{a}_t \sim \pi_\phi(\mathbf{a}_t | \mathbf{s}_t)$ $\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$ $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}$ end for for each gradient step do $\psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi)$ $\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}$ $\phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)$ $\bar{\psi} \leftarrow \tau \psi + (1-\tau)\bar{\psi}$ end for end for

Deep RL Algorithms

- https://github.com/openai/spinningup
- https://www.cs.upc.edu/ mmartin/URL/MindmapRLAlgorithms.pdf

References

- Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint arXiv:1205.4839, 2012.
- Scott Fujimoto, Herke Hoof, and David Meger.
 Addressing function approximation error in actor-critic methods.
 In International Conference on Machine Learning, pages 1582–1591, 2018.
- [3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
 Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine Learning, pages 1856–1865, 2018.
- [4] Vijay R Konda and John N Tsitsiklis.
 - On actor-critic algorithms.

SIAM journal on Control and Optimization, 42(4):1143-1166, 2003.

[5] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.

Continuous control with deep reinforcement learning.

arXiv preprint arXiv:1509.02971, 2015.

- [6] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In Advances in neural information processing systems, pages 1057–1063, 2000.
- [7] Ronald J Williams.

Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8(3-4):229–256, 1992.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 39/ 39

EPFL