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Outline

I This class:
1. Actor-Critic Methods for Deep RL

I Next class:
1. Inverse Reinforcement Learning
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Recommended reading

I I. Grondman, et al, A survey of actor-critic reinforcement learning: Standard and
natural policy gradients, IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 42.6 (2012): 1291-1307.

I Chapter 13 in S. Sutton, and G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 2018.
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Motivation

Motivation
Monte-Carlo policy gradient method suffers from high variance. How can we speed up
learning? Learn the value function along with the policy!
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Recap

• Discounted return: Rt =
∑∞

τ=t γ
τ−trτ

• State-action value function: Qπ(s, a) = E [Rt | st = s, at = a, π]

• State value function: V π(s) = Ea∼π(s) [Qπ(s, a)]

• Advantage function: Aπ(s, a) = Qπ(s, a)− V π(s)

• Optimal state-action value function: Q∗(s, a) = maxπ Qπ(s, a)

• Optimal policy: π∗(s) = arg maxa′ Q∗(s, a′)

• Optimal state value function: V ∗(s) = maxaQ∗(s, a)

• Bellman expectation: Qπ(s, a) = Es′
[
r + γEa′∼π(s′) [Qπ(s′, a′)] | s, a, π

]
• Bellman optimality: Q∗(s, a) = Es′ [r + γmaxa′ Q∗(s′, a′) | s, a]
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Three Approaches to RL

• Policy based learning (actor-only methods)

• Value based learning (critic-only methods)

• Actor-Critic learning
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Three Approaches to RL

• Actor-only Methods
I work with a parameterized family of policies
I explicitly learn policy πθ(a | s) that implicitly maximize reward over all policies
I a spectrum of continuous actions can be generated
I policy gradient methods suffer from high variance in the estimates of the gradient

• Critic-only Methods
I use temporal difference learning or Bellman optimality relationship
I have a lower variance in the estimates of expected returns
I derive a policy by selecting greedy actions
I learn value function Qw(s, a) and from there infer policy
π(s) = arg maxaQw(s, a)

I undermines the ability of using continuous actions
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Three Approaches to RL

• Actor-Critic Methods
I combine the advantages of actor-only and critic-only methods
I parameterized actor: computing continuous actions without the need for
optimization procedures on a value function

I critic: supplies the actor with low-variance knowledge of the performance
I lower variance is traded for a larger bias at the start of learning when the critic’s
estimates are far from accurate

I actor-critic methods usually have good convergence properties, in contrast to
critic-only methods [4]
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Actor-Critic Architectures
• Actor-critic algorithms maintain two sets of parameters:
I critic parameters w to approximate action-value function under current policy
I actor (policy) parameters θ

• Actor-critic algorithms follow an approximate policy gradient:
I critic updates Q-function parameters w like in policy evaluation
I actor updates policy gradient θ in direction suggested by critic
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Stochastic On-Policy Search

• Parametrize a stochastic policy πθ : S → ∆A

• Notation: the parameter θ would be omitted for the policy πθ when the policy is
present in the subscript or superscript of other functions.

• The on-policy objective function:

J (θ) = V π (s0)

=
∑
s∈S

dπ (s)V π (s)

=
∑
s∈S

dπ (s)
∑
a∈A

πθ (a | s)Qπ (s, a)

where
I dπ (s) is the stationary distribution of Markov chain for πθ
I dπ (s) = limt→∞ P [St = s | s0, πθ] is the probability that St = s when starting
from s0 and following policy πθ for t steps.
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Stochastic On-Policy Gradient Theorem

Theorem
For any differentiable policy πθ(a | s), we have

∇θJ (θ) = ∇θ
∑
s∈S

dπ (s)
∑
a∈A

Qπ (s, a)πθ (a | s)

∝
∑
s∈S

dπ (s)
∑
a∈A

Qπ (s, a)∇θπθ (a | s)

=
∑
s∈S

dπ (s)
∑
a∈A

πθ (a | s)Qπ (s, a)
∇θπθ (a | s)
πθ (a | s)

= Es∼dπ,a∼πθ [Qπ (s, a)∇θ log πθ (a | s)]
= Eπ [Qπ (s, a)∇θ log πθ (a | s)]
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Stochastic Off-Policy Search

• Advantages of off-policy methods:
1. The off-policy approach does not require full trajectories and can reuse any past

episodes (experience replay) for much better sample efficiency.
2. The sample collection follows a behavior policy different from the target policy,

bringing better exploration.

• The off-policy objective function (with behavior policy β (a | s)):

J (θ) =
∑
s∈S

dβ (s)
∑
a∈A

Qπ (s, a)πθ (a | s) = Es∼dβ

[∑
a∈A

Qπ (s, a)πθ (a | s)

]
,

where
I dβ (s) = limt→∞ P [St = s | s0, β]
I Qπ is the action-value function estimated with regard to the target policy πθ
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Stochastic Off-Policy Gradient Theorem

∇θJβ (θ) = ∇θEs∼dβ

[∑
a∈A

Qπ (s, a)πθ (a | s)

]

= Es∼dβ

[∑
a∈A

Qπ (s, a)∇θπθ (a | s) +∇θQπ (s, a)πθ (a | s)

]

≈ Es∼dβ

[∑
a∈A

Qπ (s, a)∇θπθ (a | s)

]
=
∑
s∈S

dβ (s)
∑
a∈A

β (a | s)
πθ (a | s)
β (a | s)

Qπ (s, a)
∇θπθ (a | s)
πθ (a | s)

= Es∼dβ ,a∼β

[
πθ (a | s)
β (a | s)

Qπ (s, a)∇θ log πθ (a | s)
]

= Eβ

[
πθ (a | s)
β (a | s)

Qπ (s, a)∇θ log πθ (a | s)
]

• This is a good approximation since it can preserve the set of local optima to which
gradient ascent converges [1].
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REINFORCE (Monte-Carlo Policy Gradient)

• Vanilla policy gradient update has no bias but high variance.

• Relies on an estimated return by Monte-Carlo methods using episode samples to
update the policy parameter θ.

• Since Qπ (St, At) = Eπ [Gt | St, At], we have

∇θJ (θ) = Eπ [Qπ (s, a)∇θ log πθ (a | s)]
= Eπ [Gt∇θ log πθ (At | St)]

• It relies on a full trajectory and that’s why it is a Monte-Carlo method.
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REINFORCE: Monte Carlo Policy Gradient [7]

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π∗

Algorithm parameter: step size α > 0
Initialize policy parameter θ ∈ Rd
for each episode do
Generate an episode S0, A0, R1, . . . , ST−1, AT−1, RT following π(· | ·, θ)
for each step of the episode t = 0, 1, . . . , T − 1 do
G←

∑T

k=t+1 γ
k−t−1Rk

θ ← θ + αγtG
∇π(At|St,θ)
π(At|St,θ)

end for
end for

• The use of stochastic gradient method ensures the convergence to a local optimum
when choosing a decreasing step αt such that

∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞.
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Stochastic Actor-Critic Algorithms

• An actor adjusts the parameters θ of the stochastic policy πθ (s) by stochastic
gradient ascent

• A critic estimates the action-value function Qw (s, a) ≈ Qπ (s, a) using an
appropriate policy evaluation algorithm such as temporal-difference learning.
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Compatible Function Approximation: Bias in AC

• Approximating the policy gradient introduces bias

• A biased policy gradient may not find the right solution

• Luckily, if we choose value function approximation carefully, then we can avoid bias

• If the following two conditions are satisfied:
1. Value function approximator is compatible to the policy

∇wQw (s, a) = ∇θ log πθ (a | s)

2. Value function parameters w minimize the mean-squared error

∇wEs∼dπ,a∼πθ
[
(Qw(s, a)−Qπ(s, a))2] = 0

• Then the policy gradient is without bias [6]:

∇θJ(πθ) = Es∼dπ,a∼πθ [∇θ log πθ (a | s)Qw(s, a)]
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Action-Value Actor-Critic (QAC)

Action-Value Actor-Critic Algorithm
Algorithm parameters: learning rates αw, αθ > 0.
Initialize s, θ, w at random; sample a ∼ πθ (a | s).
for t = 0, 1, . . . , T do
Sample reward rt ∼ R (s, a) and next state s′ ∼ P (s′ | s, a)
Then sample the next action a′ ∼ πθ (a′ | s′)
Update the policy parameters:

θ ← θ + αθQ
w (s, a)∇θ log πθ (a | s)

Compute the correction (TD error) for action-value at time t:

δt = rt + γQw
(
s′, a′

)
−Qw (s, a)

Use it to update the parameters of action-value function:

w ← w + αwδt∇wQw (s, a)

end for
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Advantage Actor Critic (AAC or A2C)

• In this critic Advantage value function is used:

Aπθ (s, a) = Qπθ (s, a)− V πθ (s)

• The advantage function can significantly reduce variance of policy gradient

• So the critic should really estimate the advantage function, for instance, estimating
both V (s) and Q using two function approximators and two parameter vectors:

V πθ (s) ≈ V v(s)
Qπθ (s, a) ≈ Qw(s, a)
A(s, a) = Qw(s, a)− V v(s)

• And updating both value functions by e.g. TD learning
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Policy Gradient Method with Deterministic Policy

• Deterministic policy parametrization µθ : S → A

• The on-policy objective function:

J (µθ) =
∫
S
dµ(s)Qµ (s, µθ(s)) = Es∼dµ [Qµ (s, µθ(s))]

• In continuous action spaces, greedy policy improvement becomes problematic,
requiring a global maximisation at every step.

• Instead, a simple and computationally attractive alternative is to move the policy in
the direction of the gradient of Q, rather than globally maximising Q.

• Specifically, for each visited state s, the policy parameters θk+1 are updated in
proportion to the gradient ∇θQµk (s, µθ(s)):

θk+1 = θk + αE
s∼dµk [∇θQµk (s, µθ(s))]

= θk + αE
s∼dµk

[
∇θµθ(s)∇aQµ

k
(s, a)|a=µθ(s)

]
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Policy Gradient Method with Deterministic Policy

Theorem (on-policy)
For any differentiable policy µθ, we have

∇θJ(µθ) = Es∼dµ
[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
,

where dµθ is the discounted state visitation frequency under policy µθ.

Theorem (relationship with stochastic policy gradient)
Consider a stochastic policy πµθ,σ such that πµθ,σ(a|s) = νσ(µθ(s), a) where σ is a
parameter controlling the variance. Then under some regularity assumptions over νσ
and the MDP, we have

lim
σ→0+

∇J(πµθ,σ) = ∇J(µθ).
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Deterministic Actor-Critic Algorithms

• On-Policy Deterministic Actor-Critic (SARSA updates)

δt = rt + γQw(st+1, at+1)−Qw(st, at)
wt+1 = wt + αwδt∇wQw(st, at)
θt+1 = θt + αθ∇θµθ(st)∇aQw(st, a)|a=µθ(st)

• The off-policy performance objective:

Jβ (µθ) =
∫
S
dβ(s)V µ (s) =

∫
S
dβ(s)Qµ (s, µθ(s)) = Es∼dβ [Qµ (s, µθ(s))]

• The off-policy gradient:

∇θJβ(µθ) ≈ Es∼dβ
[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
• Off-Policy Deterministic Actor-Critic (Q-learning updates)

δt = rt + γQw(st+1, µθ(st+1))−Qw(st, at)
wt+1 = wt + αwδt∇wQw(st, at)
θt+1 = θt + αθ∇θµθ(st)∇aQw(st, at)|a = µθ(s)
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Compatible Function Approximation

• We find a critic Qw(s, a) such that the gradient ∇aQµ(s, a) can be replaced by
∇aQw(s, a), without affecting the deterministic policy gradient.

Theorem
A function approximator Qw(s, a) is compatible with a deterministic policy µθ(s),
∇θJβ(θ) = E

[
∇θµθ(s)∇aQw(s, a)|a=µθ(s)

]
, if

1. ∇aQw(s, a)|a=µθ(s) = ∇θµθ(s)>w and

2. w minimises the mean-squared error, MSE(θ, w) = E
[
ε(s; θ, w)>ε(s; θ, w)

]
where ε(s; θ, w) = ∇aQw(s, a)|a=µθ(s) −∇aQµ(s, a)|a=µθ(s)

• For any deterministic policy µθ(s), there always exists a compatible function
approximator of the form

Qw(s, a) = (a− µθ(s))>∇θµθ(s)>w + V v(s),

where V v(s) may be any differentiable baseline function that is independent of the
action a.
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DDPG: Deep Deterministic Policy Gradient [5]

• DDPG is an extension of Q-learning for continuous action spaces.

• Therefore, it is an off-policy algorithm (we can use ER!)

• It is also an actor-critic algorithm (has networks Qφ and πθ)

• Uses Q and π target networks for stability.

• Differently from other critic algorithms, policy is deterministic

• Noise added for exploration: at = µθ(st) + ξ, where ξ ∼ N (0, σI)

• Qφ network is trained using standard loss function:

L(φ,D) = E
(s,a,r,s′)∼D

[(
Qφ(s, a)−

{
r + γQφtarg (s′, µθtarg (s′))

})2
]

• As action is deterministic and continuous (NN), we can easily follow the gradient in
policy network to increase future reward:

∇θ E
s∼D

[
Qφ(s, µθ(s))

]
≈

1
N

∑
∇aQφ(s, a)∇θµθ(s)
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DDPG algorithm [5]
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TD3: Twin Delayed DDPG [2]

• DDPG brittle with respect to hyperparameters and other kinds of tuning.

• TD3 is an off-policy algorithm.

• TD3 can only be used for environments with continuous action spaces.

• Similar to DDPG but with the following changes:
1. Clipped action exploration or target policy smoothing: noise added like DDPG

but noise bounded to fixed range

a′(s′) = clip
(
µθtarg (s′) + clip (ε,−c, c) , aLow, aHigh

)
, ε ∼ N (0, σ)

2. Pessimistic Double-Q Learning: It uses two (twin) Q networks and uses the
pessimistic one for current state for updating the network

L(φi,D) = E
(s,a,r,s′)∼D

[(
Qφi (s, a)−

{
r + γ min

i=1,2
Qφi,targ (s′, a′(s′))

})2
]

3. Delayed Policy Updates: Updates of Critic are more frequent than of policy (e.g.
2 or 3 times)
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TD3 algorithm [2]

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 39



SAC: Soft Actor Critic [3]

• Policy Entropy-regularized: we will look for maximum entropy policies with given
data (in SAC we go back to stochastic π).

H (π(· | s)) = E
a∼π(s)

[− log π(a | s)]

• So we search for policy:

π∗ = arg max
π

E
τ∼π

[
∞∑
t=0

γt {R(st+1) + αH (π(· | st))}

]
where α is the trade-off between reward and entropy.

• Entropy enforces exploration, so no need to add noise to actions.

• Usually α decreases during learning and is disabled to test performance.
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SAC: Soft Actor Critic [3]

• Let’s define value functions in this case:

V π(s) = E
τ∼π

[
∞∑
t=0

γt {R(st+1) + αH (π(· | st))}
∣∣s0 = s

]

Qπ(s, a) = E
τ∼π

[
∞∑
t=0

γtR(st+1) + α

∞∑
t=1

γtH (π(· | st))
∣∣s0 = s, a0 = a

]

• So Bellman equations can be written as:

V π(s) = E
τ∼π

[Qπ(s, a) + αH (π(· | s))]

Qπ(s, a) = E
s′∼P,a′∼π

[
R(s, a, s′) + γ

{
Qπ(s′, a′) + αH

(
π(· | s′)

)}]
= E

s′∼P

[
R(s, a, s′) + γV π(s′)

]
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SAC: Soft Actor Critic [3]

• Architecture: Networks and loss functions for each one:
I Q-value functions: Qθ1 (s, a), Qθ2 (s, a) (twin like TD3)

L(θi,D) = E
(s,a,r,s′)∼D

[(
Qθi (s, a)−

{
r + γVψtarg (s′)

})2
]

I Value functions Vψ(s), Vψtarg (s)

L(ψ,D) = E
s∼D,a∼πφ

[(
Vψ(s)−

{
min
i=1,2

Qθi (s, a)− α log πφ(a | s)
})2

]
I Policy πφ(a | s). Maximize

E
a∼π

[Qπ(s, a)− α log π(a | s)]

which maximize V value function ... but how to compute gradients?
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Reparametrization Trick

• Problematic because in ∇φ, expectation follow stochastic πφ.

E
a∼πφ

[
Qπφ (s, a)− α log πφ(a | s)

]
• Use a reparametrizarion trick. It can be done when we define the stochastic πφ as
Gaussian by adding noise to the action:

ãφ(s, ξ) = tanh
(
µφ(s) + σφ(s)� ξ

)
, ξ ∼ N (0, I)

• Now we can rewrite the term as:

E
a∼πφ

[
Qπφ (s, a)− α log πφ(a | s)

]
= E

ξ∼N

[
Qπφ (s, ãφ(s, ξ))− α log πφ(ãφ(s, ξ) | s)

]
• Now we can optimize the policy according to

max
φ

E
s∼D,ξ∼N

[
Qθ1 (s, ãφ(s, ξ))− α log πφ(ãφ(s, ξ) | s)

]
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Soft Actor Critic Algorithm
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Performance Comparison
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Performance Comparison
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Performance Comparison
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Performance Comparison
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Deep RL Algorithms

• https://github.com/openai/spinningup

• https://www.cs.upc.edu/ mmartin/URL/MindmapRLAlgorithms.pdf
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