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Outline

» This class:

1. Actor-Critic Methods for Deep RL
> Next class:

1. Inverse Reinforcement Learning
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Recommended reading

> |. Grondman, et al, A survey of actor-critic reinforcement learning: Standard and
natural policy gradients, IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 42.6 (2012): 1291-1307.

» Chapter 13 in S. Sutton, and G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 2018.
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Motivation

Motivation

Monte-Carlo policy gradient method suffers from high variance. How can we speed up
learning? Learn the value function along with the policy!
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Recap

e Discounted return: Ry = Z:o:t 'y"_trT

e State-action value function: Q™ (s,a) =E[R; | st = s,at = a, 7]

e State value function: V7 (s) = E, (s [Q7 (5, a)]

e Advantage function: A™(s,a) = Q™ (s,a) — V7 (s)

e Optimal state-action value function: Q*(s,a) = maxr Q7 (s, a)

e Optimal policy: 7*(s) = argmax, Q*(s,a’)

e Optimal state value function: V*(s) = max, Q*(s,a)

e Bellman expectation: Q™(s,a) = E,/ [7" +VEBa/ (s [RT(87,0")] | 5,0, 7r]

e Bellman optimality: Q*(s,a) = E./ [r +ymax, Q*(s',a’) | s,a]
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Three Approaches to RL
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e Policy based learning (actor-only methods)
e Value based learning (critic-only methods)

o Actor-Critic learning
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Three Approaches to RL

e Actor-only Methods
> work with a parameterized family of policies
> explicitly learn policy mg(a | s) that implicitly maximize reward over all policies
> a spectrum of continuous actions can be generated

» policy gradient methods suffer from high variance in the estimates of the gradient

e Critic-only Methods
> use temporal difference learning or Bellman optimality relationship
> have a lower variance in the estimates of expected returns
> derive a policy by selecting greedy actions

> learn value function Q% (s, a) and from there infer policy
m(s) = argmax, Q" (s,a)

> undermines the ability of using continuous actions
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Three Approaches to RL

e Actor-Critic Methods

>

>

v

lions@epfl

combine the advantages of actor-only and critic-only methods

parameterized actor: computing continuous actions without the need for
optimization procedures on a value function

critic: supplies the actor with low-variance knowledge of the performance

lower variance is traded for a larger bias at the start of learning when the critic’s
estimates are far from accurate

actor-critic methods usually have good convergence properties, in contrast to
critic-only methods [4]
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Actor-Critic Architectures

e Actor-critic algorithms maintain two sets of parameters:

> critic parameters w to approximate action-value function under current policy

> actor (policy) parameters 6

e Actor-critic algorithms follow an approximate policy gradient:

> critic updates Q-function parameters w like in policy evaluation

> actor updates policy gradient € in direction suggested by critic

state

Critic
»| Value
Function
/
reward

‘—| Environment ‘—~

action
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Stochastic On-Policy Search

e Parametrize a stochastic policy g : S — AA

o Notation: the parameter 8 would be omitted for the policy my when the policy is
present in the subscript or superscript of other functions.

e The on-policy objective function:

J(0)

V7 (s0)

= Z d™ (s) V™ (s)

sES

> dm(9)> m(al5)Q (s,a)

SES acA

where
> d™ (s) is the stationary distribution of Markov chain for my

> d™ (s) = lim¢— o0 P[St = s | so, mp] is the probability that Sy = s when starting
from sg and following policy gy for ¢ steps.
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Stochastic On-Policy Gradient Theorem

Theorem
For any differentiable policy mg(a | s), we have

VoJ(0) = Vo) d™(s)Y Q" (s,0)m(als)

sES a€A
o Z d™ (s) Z Q7 (s,a) Vo (a | )
SES acA
= Y r @Y el 9QT (s el
sES ac€A

= Eswd"",amwrg [QW (57 a) Vg logmg (a | 8)]
= Ex [Q" (s,a) Vg logmg (a | s)]
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Stochastic Off-Policy Search

e Advantages of off-policy methods:

1. The off-policy approach does not require full trajectories and can reuse any past
episodes (experience replay) for much better sample efficiency.

2. The sample collection follows a behavior policy different from the target policy,
bringing better exploration.

e The off-policy objective function (with behavior policy 3 (a | s)):

1) = Y ()Y QT (sa)m(als) = E,gs |y Q7 (ssa)m(als)],

sES acA acA

where
> dP (s) = limi— oo P[St = s | 50, ]

> Q7 is the action-value function estimated with regard to the target policy 7y
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Stochastic Off-Policy Gradient Theorem

Vods(0) = VoBy g5 | Q" (s,0)m(als)
acA

Bovas | Q7 (5,0) Vomg (a] 8) + VoQ (s,0) 7 (a | 5)

acA

E, 45 Z Q" (s,a) Vgmg (a | s)

Q

acA
_ 5 (s) 7r9 (a]s) ﬂsaVQﬂg(a|s)
2P el Gy e ST
s€S acA
o (a | s)

= Eygb amp [ Bals) Q" (s,a) Vg logmg (a | s)}

= 77r9(a|s) T (s,a ogmg (a]s
- 5 [F o sy Votogm (a5

e This is a good approximation since it can preserve the set of local optima to which
gradient ascent converges [1].
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REINFORCE (Monte-Carlo Policy Gradient)

e Vanilla policy gradient update has no bias but high variance.

e Relies on an estimated return by Monte-Carlo methods using episode samples to
update the policy parameter 6.

e Since Q7 (S, A¢) = Ex [Gt | St, A¢], we have

Vol (0) = Ex[Q7 (s,a) Vglogmy (a]s)]
Er [GtVglogmg (At | St)]

e It relies on a full trajectory and that's why it is a Monte-Carlo method.
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REINFORCE: Monte Carlo Policy Gradient [7]

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for 7*

Algorithm parameter: step size o > 0

Initialize policy parameter 6 € R?

for each episode do
Generate an episode Sp, Ao, R1,...,S7—1,Ar_1, Ry following (- | -,0)
for each step of the episode t =0,1,...,7 — 1 do

T k—t—1
G Zk:tJrl’y Ry

t 1 Vm(A¢|S,0)
00+ o7 Goris, 6
end for
end for

e The use of stochastic gradient method ensures the convergence to a local optimum
when choosing a decreasing step «; such that Zzo ot = oo and Zzo af < 0.
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Stochastic Actor-Critic Algorithms

e An actor adjusts the parameters 6 of the stochastic policy 7y (s) by stochastic
gradient ascent

e A critic estimates the action-value function Q% (s,a) ~ Q™ (s,a) using an
appropriate policy evaluation algorithm such as temporal-difference learning.
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Compatible Function Approximation: Bias in AC

e Approximating the policy gradient introduces bias
e A biased policy gradient may not find the right solution
o Luckily, if we choose value function approximation carefully, then we can avoid bias

o |f the following two conditions are satisfied:

1. Value function approximator is compatible to the policy
VwQY (s,a) = Vglogmg (a|s)
2. Value function parameters w minimize the mean-squared error
VauBendr ammy [(@Y(s,0) = Q7 (s,a))?] = 0
e Then the policy gradient is without bias [6]:

VGJ(TFO) = Eswd“,ar\mrg [VQ log g (a‘ ‘ S) Qw(sz a)]
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Action-Value Actor-Critic (QAC)

Action-Value Actor-Critic Algorithm
Algorithm parameters: learning rates au,, ag > 0.
Initialize s, 0, w at random; sample a ~ 7y (a | s).
fort=0,1,...,7 do
Sample reward r¢ ~ R (s,a) and next state s’ ~ P (s’ | s,a)
Then sample the next action a’ ~ 7y (a’ | s7)
Update the policy parameters:

0 < 0+ apQ¥ (s,a)Vglogmg (als)
Compute the correction (TD error) for action-value at time ¢:
0 = 1Tt +71QY (s/,a') — Q% (s,a)
Use it to update the parameters of action-value function:
w 4 W+ awdtVeQ" (s,a)

end for
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Advantage Actor Critic (AAC or A2C)

e In this critic Advantage value function is used:
AT (s,a) = Q"(s,a) —V7(s)
e The advantage function can significantly reduce variance of policy gradient

e So the critic should really estimate the advantage function, for instance, estimating
both V(s) and @ using two function approximators and two parameter vectors:
V7o (s) =~ VV(s)
Q™ (s,a) = Q¥(s,a)
A(s,a) = Q% (s,a) —VY(s)

Q

e And updating both value functions by e.g. TD learning
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Policy Gradient Method with Deterministic Policy

e Deterministic policy parametrization pg : S — A

e The on-policy objective function:
J (no) = /d“(S)Q“ (s,10(5)) = Esman [Q" (s, 10(5))]
s

e In continuous action spaces, greedy policy improvement becomes problematic,
requiring a global maximisation at every step.

e Instead, a simple and computationally attractive alternative is to move the policy in
the direction of the gradient of @, rather than globally maximising Q.

e Specifically, for each visited state s, the policy parameters §%*1 are updated in
proportion to the gradient VoQ** (s, ug(s)):

Ot = 0F £ aE__ i [VoQM: (s, 1o(s))]

k
= 9k+o¢E5Nde Vope(s)VaQH (37a)‘a:M9(5):|
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Policy Gradient Method with Deterministic Policy

Theorem (on-policy)

For any differentiable policy pg, we have

VG‘](/-"G) = Esgnr I:VG.LLH(S)VGQM(&a)‘a:ug(s)] ’

where d*9 s the discounted state visitation frequency under policy pg.

Theorem (relationship with stochastic policy gradient)

Consider a stochastic policy ., o such that m,, s (a|s) = ve(ue(s),a) where o is a
parameter controlling the variance. Then under some regularity assumptions over v,
and the MDP, we have

lim VJ(7uy,0) = VJ(1e).

oc—0T
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Deterministic Actor-Critic Algorithms

e On-Policy Deterministic Actor-Critic (SARSA updates)

0t =1t + Q% (St41,at4+1) — Q¥ (st, at)
Wiyl = Wt + @tV QY (st, at)
Ot41 = 0t + g Vo (st)VaQ" (¢, ) la=puy (sy)

e The off-policy performance objective:

Jg (ne) = /dﬂ(S)V“ (s) = /dﬁ(S)Q“ (5,10(5)) = BEyogs [QF (s, 10(s))]
s s

e The off-policy gradient:
VoJs(io) = Eyogs [Voro(s)VaQ (s,0)la—py(s)]

e Off-Policy Deterministic Actor-Critic (Q-learning updates)

8t =1t +7QY (st+41, po(st41)) — Q" (s¢, ar)
Wwig1 = Wi + @t VwQY (st,at)
Oi41 =0t + g Vong(st)VaQ™ (st, at)|a = po(s)
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Compatible Function Approximation

e We find a critic Q% (s, a) such that the gradient V,Q* (s, a) can be replaced by
VaQ¥(s,a), without affecting the deterministic policy gradient.

Theorem
A function approximator Q¥ (s,a) is compatible with a deterministic policy pg(s),
VGJB(Q) =E [VQIU'Q (S)VGQM(Sv a)'a:pg(s)] , if

1. VaQw(sva”a:p,g(s) = VQ#Q(S)T’LU and

2. w minimises the mean-squared error, MSE(0, w) = E [e(s; 0,w) T e(s; 0, w)]
where €(s; 0, w) = VaQw(s,a)\a:W)(s) — VaQH (s, a)‘a=ue(5)

e For any deterministic policy pg(s), there always exists a compatible function
approximator of the form

Q"(s,a) = (a—po(s)) " Vono(s) "w+V"(s),

where VV(s) may be any differentiable baseline function that is independent of the
action a.
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DDPG: Deep Deterministic Policy Gradient [5]

e DDPG is an extension of Q-learning for continuous action spaces.
e Therefore, it is an off-policy algorithm (we can use ER!)

e It is also an actor-critic algorithm (has networks Q and my)

e Uses () and 7 target networks for stability.

e Differently from other critic algorithms, policy is deterministic

e Noise added for exploration: a; = pg(s¢) + &, where & ~ N(0,01)

® Q4 network is trained using standard loss function:

L0D) = B [(Qsls,0) — {r+1Quuuny (0 )})]

(s,a,r,8")~D

e As action is deterministic and continuous (NN), we can easily follow the gradient in
policy network to increase future reward:

Vo B [Qu(sus(s)] ~ 1 Va@u(sa)Vosa(s)
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DDPG algorithm [5]

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#?) and actor (s|0*) with weights 6% and 6*.
Initialize target network Q' and yi/ with weights 69" < 69, g1’ « g
Initialize replay buffer R
for episode = 1, M do
Initialize a random process AV for action exploration
Receive initial observation state s
fort=1,Tdo
Select action a; = pu(s¢|0") 4+ N; according to the current policy and exploration noise
Execute action a; and observe reward 7, and observe new state s,
Store transition (s, az, ¢, S¢+1) in R
Sample a random minibatch of NV transitions (s;, a;, r;, $;+1) from R
Set y; = ri + Q' (si41, 1/ (5i1]0)[09)
Update critic by minimizing the loss: L = % >, (yi — Q(s4, ai]09))?
Update the actor policy using the sampled policy gradient:

1
VoulJ = N Z VaQ(5,al09) =y, azpu(si) Vor 11(s10") s,

Update the target networks:
09 769 + (1 - 7)6?
0 70"+ (1= 7)o"
end for
end for
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TD3: Twin Delayed DDPG [2]

o DDPG brittle with respect to hyperparameters and other kinds of tuning.
e TD3 is an off-policy algorithm.
e TD3 can only be used for environments with continuous action spaces.

e Similar to DDPG but with the following changes:

1. Clipped action exploration or target policy smoothing: noise added like DDPG
but noise bounded to fixed range

a'(s") = clip (Nemg(S') + clip (¢, —¢, ¢) , aLDW7aHigh) , e~N(0,0)

2. Pessimistic Double-Q Learning: It uses two (twin) Q networks and uses the
pessimistic one for current state for updating the network

2
L(¢;,D) = E (s,a) — i ) ' al(s'
(@ ) (s,a,r,s")~D (Q¢I (5,0) {T + ’Yirilil,g Q%’tdrg (s',a'(s ))})

3. Delayed Policy Updates: Updates of Critic are more frequent than of policy (e.g.
2 or 3 times)
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TD3 algorithm [2]

Algorithm 1 TD3

Initialize critic networks Qg,, Q,, and actor network 7,
with random parameters 61, 62, ¢
Initialize target networks 0] < 61, 0 < 02, ¢' <+ ¢
Initialize replay buffer B
fort =1to7T do
Select action with exploration noise a ~ 74 (s) + €,
e ~ N(0, ) and observe reward r and new state s’
Store transition tuple (s, a,r,s’) in B

Sample mini-batch of N transitions (s, a,r, s") from B
a<+ my(s')+e€ €e~clipN(0,5), —c,c)
Y 7 +ymini=1,2 Qp;(s', @)
Update critics 6; < argming, N =1 3" (y—Qq, (s, a))?
if ¢ mod d then
Update ¢ by the deterministic policy gradient:
Vil (8) = N1 Y VaQo, (5, @)lary () Vsr(s)
Update target networks:
0; < 76; + (1 — 7)0;
¢ 1o+ (1—7)¢
end if
end for
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SAC: Soft Actor Critic [3]

e Policy Entropy-regularized: we will look for maximum entropy policies with given
data (in SAC we go back to stochastic 7).

Hix(|9) = B _[-logw(als)

e So we search for policy:
oo
™ = argmax E | 3" {R(ser1) + o (x(- | s0))}
ﬂ ~
t=0
where « is the trade-off between reward and entropy.
e Entropy enforces exploration, so no need to add noise to actions.

e Usually o decreases during learning and is disabled to test performance.

ICLHEEN  Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 39



SAC: Soft Actor Critic [3]

e Let's define value functions in this case:

VT(s) = E | Y 4 {R(see1) +aH (n(- | s0))} |s0 = s

N
Q7(s.a) = E Y ' R(six1) Fa) " H(n(|s0))[s0=sa0=a
t=0 t=1
e So Bellman equations can be written as:
V() = E [Q7(s,a) 4t (n(- | )

Q" (s,a) = E [R(s, a,s’) + {Q”(s',a') + aH (7r( | 5’)) }]

s'~P,a' ~T

’EP [R(s7 a,s’) +~yV7™ (s/)]

s!~
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SAC: Soft Actor Critic [3]

o Architecture: Networks and loss functions for each one:
> Q-value functions: Qg, (s,a), Qg,(s,a) (twin like TD3)

L:0) = B [0 = {r+ Wiy })°]

(s,a,r,s")~D

> Value functions Vi, (s), Vi, (5)

5~D,a~7r¢ 1=1,2

2
Ly, D) = E <V¢)(s) — { min Qy, (s,a) — alogmy(a | s)})

> Policy g (a | 5). Maximize

E [Q"(s,a) —alogn(a| s)]

an~T

which maximize V value function ... but how to compute gradients?
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Reparametrization Trick

e Problematic because in Vg, expectation follow stochastic 7.

E [Q"d? (s,a) — alogmy(a | s)]

anvT g

e Use a reparametrizarion trick. It can be done when we define the stochastic 7y as
Gaussian by adding noise to the action:

ag(s,€) = tanh (pg(s) +op(s) ©€), &~N(0,1)
e Now we can rewrite the term as:

E [Q74(s,a) — alogmy(a|s)] = By [Q™ (5,d0(s,€)) — alogmy(dg(s,€) | 5)]

a~7r¢

e Now we can optimize the policy according to

max B [Qo, (5,d0(s,8)) — alogmy(ag(s,€) | s)]
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Soft Actor Critic Algorithm

Algorithm 1 Soft Actor-Critic
Initialize parameter vectors 17, 1, 0, ¢.
for each iteration do
for each environment step do
a; ~ my(ays;)
St41 p(5¢+1|3:,at)
D« DU {(st,as, 7(st, ), 8¢41) }
end for
for each gradient step do
YU = AvVydv ()
0; « 6; — AoV, Jo(8;) fori € {1,2}
¢ ¢ — A VyJr(9)
veTY+(1-1)Y
end for
end for
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Performance Comparison

Ant

— vpg — trpo — ppo — ddpg sac — td3

6000
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-2000
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TotalEnvinteracts 1e6
3M timestep benchmark for Ant-v2.
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Performance Comparison

Swimmer

— vpg — trpo  — ppo — ddpg sac — td3
150

Performance

-50

0.5 1.0 1.5 2.0 2.5
TotalEnvinteracts 1e6

3M timestep benchmark for Swimmer-v2.
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Performance Comparison

Walker

— vpg — trpo  — ppo — ddpg sac — td3

Performance

0.5 1.0 1.5 2.0 2.5
TotalEnvinteracts 1e6

3M timestep benchmark for Walker2d-v2.
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Performance Comparison

Hopper

— vpg — trpo — ppo — ddpg -~ sac — td3
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b Mid T dig ]
0
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TotalEnvinteracts 1e6

3M timestep benchmark for Hopper-v2.
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Deep RL Algorithms

e https://github.com/openai/spinningup

e https://www.cs.upc.edu/ mmartin/URL/MindmapRLAIlgorithms.pdf
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https://github.com/openai/spinningup
https://www.cs.upc.edu/~mmartin/URL/MindmapRLAlgorithms.pdf
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