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General Considerations
 Since the LNA is the 1st-gain stage in the Rx path, its 𝑁𝐹 directly adds to the 

system 𝑁𝐹

 The typical Rx noise figure ranges from 6 to 8 dB, it is expected that the antenna 
switch or duplexer contributes about 0.5 to 1.5 dB, the LNA about 2 to 3 dB, and 
the remainder of the chain about 2.5 to 3.5 dB

 The equivalent noise PSD at input is given by 𝑆 4𝑘𝑇𝑅 , the 𝑁𝐹
neglecting the induced gate noise and the contributions of the following stages is 
then simply

 Assuming the MOST is biased in strong inversion 𝐺 2𝐼 𝑉 𝑉⁄

 With 𝑁𝐹 2𝑑𝐵 and 𝑅 50Ω, 𝑅 29Ω. Neglecting the induced gate 
noise and assuming 𝑉 𝑉 400𝑚𝑉 the bias current is then 4.5 mA
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General Considerations
 In addition to noise requirements, the LNA should also offer sufficient gain in order 

to reduce the noise contribution of the following stages

 It should have a sufficiently high IIP3 to avoid any intermodulation at the input

 Most of the time a 50Ω input (sometimes also output) impedance is (are) required

 The return input (output) loss should be small, the reverse isolation should be 
large and the LNA should be stable
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Input Matching – Common Source Amplifier
 Several circuit configurations can be used to create a 50 input resistance

 Assuming 𝐺 𝑅 ≫ 1, 𝐶 ≫ 𝐶 and 𝜔 1 𝑅 𝐶⁄
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 Proper choice of 2𝐶 𝐺 𝐶⁄ can yield 50 input resistance

 Low voltage gain at high frequencies due to bandwidth limitation at the output node
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Common Source LNA (without matching network-LNA1)

 A resistor 𝑅 can be added in parallel with the input and capacitance 𝐶 can be 
tuned out with an external inductor

𝐶 tuned out by 𝐿

 The equivalent transconductance (at resonance frequency) can be calculated from
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at resonance frequency
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Common Source LNA (without matching network-LNA1)

 The thermal noise at the output (at resonance frequency) is given by

 Finally the noise factor is obtained as

 The input-referred equivalent noise resistance (including 𝑅 noise) is given by

 Termination resistance 𝑅 adds noise and lowers the gain by 6dB

 CS amplifier without termination 𝑅 (𝑅 → ∞ in above expression)
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Common Source LNA (with matching network-LNA2)

 Resistance 𝑅 can be made larger to reduce its noise current contribution

 An impedance matching network has then to be added in order to reduce the 
impedance seen from the source so it matches the source resistance

 Voltage gain, equivalent transconductance and noise factor are then given by
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Common Gate LNA (without matching network-LNA3)

 Input impedance:

 Equivalent transconductance:

 Input-referred noise resistance:

 Noise factor:
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Common Gate LNA (with matching network-LNA4)

 If 𝑅 is too small it will lead to a high value of 𝐺 for having 𝑍 1 𝐺⁄ 𝑅 , 
which results in a high power consumption

 An input impedance matching network is required, with the following parameters:
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 The real part of the input impedance is then given by
   2

1

1
in in

ms
R Z

G Q
 




 Input matching is then obtained by setting 𝑅 𝑅 , which leads to
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Common Gate LNA (with matching network-LNA4)

 The voltage gain from ∆𝑉 to ∆𝑉 under impedance matching is given by
1
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 The total input noise resistance and noise factor under the above matched 
condition are then given by
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Common Source Inductively Degenerated LNA (LNA5)
 Another method of creating a resistive input impedance without degrading the 

noise performance is to use inductive source degeneration

LS

Iout
Zin

 𝑍 purely resistive at the resonant frequency set by 𝐶 and 𝐿

 However, 𝐿 is actually chosen to match the source resistance 𝑅 and hence 
cannot be used to tune out 𝐶

 Additional degree of freedom is required to eliminate the remaining imaginary part

 Can be done by adding a series inductor 𝐿 at the gate
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Common Source Inductively Degenerated LNA (LNA5)

 The remaining imaginary part can be tuned out thanks to a series inductor 𝐿

 The voltage gain from the input to the gate is then given by
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Common Source Inductively Degenerated LNA (LNA5)

 The equivalent transconductance 𝐺 ≜ ∆𝐼 ∆𝑉⁄ at resonance is now 
boosted by the 𝑄 of the series resonant circuit
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 The input impedance is then given by
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Common Source Inductively Degenerated LNA (LNA5)
 The noise factor 𝐹 at 𝜔 𝜔 is then calculated from the circuit below
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 From which we get the input referred noise resistance 𝑅

 And the noise factor 𝐹
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LNA Comparison
Remark LNA1 LNA2 LNA3 LNA4 LNA5
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Resistive Feedback Wideband LNA

 The small-signal input impedance 𝑍 is given by
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 Impedance matching is therefore obtained by setting 𝐺 1 𝑅⁄

 The small-signal voltage gain is given by
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Resistive Feedback Wideband LNA

 It can be shown that the input-referred thermal noise resistance is 𝑅 given by
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 where 𝐺 𝛾 · 𝐺 . The noise factor is then given by
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 Assuming again that 𝑅 ≫ 𝑅 the noise factor further simplifies to

11 nDF  

 which again illustrates the importance of the transistor noise excess factor 𝛾
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Current Reuse LNA

 As shown in the above small-signal schematics, the pMOS and nMOS
transconductance come in parallel adding into a total transconductance 𝐺
𝐺 𝐺 . Since M1 and M2 share the same bias current, 𝐺 is about twice 
that obtained by a single transistor for the same bias current (particularly if both M1 
and M2 are biased in WI)

 Merging the two transconductances results in the same schematic as the resistive 
feedback LNA. The input impedance 𝑍 and voltage gain are therefore given by
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Current Reuse LNA

© C. Enz | 2021 Low-power radio design for the IoT (MICRO-461) Slide 19

1 2m m mG G G

 The above noise schematic is identical to the resistive feedback LNA except for 
the transconductance and the noise current source 𝐼 which accounts for both 
the noise from M1 and M2

 Assuming again that 𝑅 ≫ 𝑅 , the input-referred noise resistance is given by
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 where 𝐺 ≜ 𝐺 +𝐺 , 𝛾 ≜ 𝛾 · 𝐺 𝛾 · 𝐺 𝐺 𝐺⁄
which is approximately 𝛾 𝛾 𝛾 if 𝛾 𝛾

 The noise factor under impedance matched condition 𝐺 1 𝑅⁄ is then given by
41 1 forS

f S
f
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 The noise factor is identical to the resistive feedback LNA, but requires about half 
the current to achieve the same input impedance
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Wide-band (WB) LNA with Noise Cancellation
 The noise of an LNA can be reduced by using feed-forward noise cancellation
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whereas it is destructive for the transistor noise source 𝐼
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 F. Bruccoleri, E. A. M. Klumperink and B. Nauta, JSSC, Feb. 2004.
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WB LNA with Noise Cancellation – Optimum Gain

 There is an optimum value of 𝐴 for which the transistor noise is cancelled at the 
output (or equivalently 𝑍 0)
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 For input matching condition (𝑍 𝑅 ), the optimum voltage gain 𝐴 is then 
given by
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 The input impedance is easily calculated as
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 F. Bruccoleri, E. A. M. Klumperink and B. Nauta, JSSC, Feb. 2004.
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WB LNA with Noise Cancellation – Noise Figure

 Imposing 𝐴 𝐴 1 𝑅 𝑅⁄ results in 𝐹 0 and hence
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 The noise figure can be calculated accounting for the noise added by the amplifier 
and the resistances
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 F. Bruccoleri, E. A. M. Klumperink and B. Nauta, JSSC, Feb. 2004.
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WB LNA with Noise Cancellation – Implementation

 Same result as before with 𝐴 𝐺 𝐺⁄ and assuming 𝐺 𝑅 ≫ 1
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 The noise contributed by M1 is cancelled for

 The voltage gain then becomes
3

3
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Bias circuit not shown

 F. Bruccoleri, E. A. M. Klumperink and B. Nauta, JSSC, Feb. 2004.
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WB LNA with Noise Cancellation – Implementation

 The optimum noise factor obtained for 𝐺 𝐺⁄ 𝐴 1 𝑅 𝑅⁄ is then 
given by

Gm1ꞏ VG

RfRS
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InD1
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Gm2ꞏ VG

Gm3ꞏ VG2

InD2+InD3
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 Since 𝑅 𝑅⁄ ≅ 1 𝐴⁄ ≪ 1, the noise of M3 can be neglected compared to 
the one of M2, resulting in

 F. Bruccoleri, E. A. M. Klumperink and B. Nauta, JSSC, Feb. 2004.
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Current Optimization in a CS Stage (without VS)

 The voltage gain at high frequency (𝜔 ≫ 𝜔 𝐴⁄ 𝐺 𝐶⁄ ) is given by
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 T. Melly, EPFL PhD Thesis No. 2231, 2000.
 A.-S. Porret, EPFL PhD Thesis No. 2542, 2002.
 A. Mangla, M. A. Chalkiadaki, F. Fadhuile, T. Taris, Y. Deval, and C. C. Enz, Microelectronics Journal, vol. 44, pp. 570-575, July 2013.
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Self-loading capacitance

 where 𝜔 𝐺 𝐶⁄ is the gain-bandwidth product

 We would like to find the minimum current for achieving a given voltage gain 𝐴
at a given frequency 𝜔

 This optimization of the bias current requires to include the self-loading 
capacitance that scales with 𝑊 in the load capacitance 𝐶 𝐶 𝑊 · 𝐶
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Current Optimization in a CS Stage (without VS)
 The bias current can be written in terms of the inversion coefficient 𝐼𝐶 and 

transistor aspect ratio 𝑊 𝐿⁄ as
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 C. C. Enz and A. Pezzotta, MIXDES 2016.
 C. Enz, F. Chicco, and A. Pezzotta, IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 73-81, Autumn 2017.
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Minimum Bias Current (without VS)

 Self-loading cannot be ignored and introduces a minimum bias current for 
achieving a given gain-bandwidth product

 For reasonable values of the gain, the minimum current is achieved for an 
inversion coefficient in the moderate inversion region
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Optimum for Minimum Bias Current (without VS)
 The optimum 𝐼𝐶, assuming no VS, for which the bias current is minimum is given by
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 1limIC     

 This value corresponds to the vertical lines in the previous plot

 The normalized gain-bandwidth can be written as

4 1 1
2max
IC

 

 

 There is a minimum 𝐼𝐶 below which the specified gain-bandwidth 𝜔 can no more 
be achieved (assuming no VS)
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 The above condition on 𝐼𝐶 also corresponds to the maximum gain-bandwidth that 
can be reached for a given 𝐼𝐶 (again assuming no VS)
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Constant Gain-Bandwidth Product 𝒖 (with VS)

 The current saving is even greater when accounting for VS 

 The optimum 𝐼𝐶 is slightly reduced due to VS and the minimum bias current is 
slightly increased
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 C. C. Enz and A. Pezzotta, MIXDES 2016.
 C. Enz, F. Chicco, and A. Pezzotta, IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 73-81, Autumn 2017.

0.1

2

4
6

1

2

4
6

10

2

4
6

100

N
or

m
al

iz
ed

 B
ia

s 
C

ur
re

nt
 i b

0.01 0.1 1 10 100

Inversion Coefficient IC

0.1

2

4
6
1

2

4
6
10

2

4
6
100

N
orm

alized W
/L

c=0

c=0

c=0.3

c=1 = 0.1

c=0.3

c=1



Low-power LNA design

ICLAB

Example: 24GHz Amplifier in 40nm
 Target: Av=15dB at =24GHz with CL=18.5 fF gives =0.83

 For L=Lmin=40nm (ℓ=1) we have ICopt=6.3, ibopt=8.78 and wopt=1.41
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 Denormalizing for the given 40nm 
technology parameters and plugging 
the values in the BSIM6 model leads 
to a simulated gain of 14dB at 24GHz

 Verification with ADS and BSIM6

 A. Mangla, M. A. Chalkiadaki, F. Fadhuile, T. Taris, Y. Deval, and C. C. Enz, Microelectronics Journal, vol. 44, pp. 570-575, July 2013.
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Low-power LNA Design

 High-ft of deep-submicron CMOS process can be traded against power 
consumption by moving operating point to moderate or even weak inversion

 Similar to low-frequency analog design, the power consumption of RF LNA can be 
optimized using the normalized current efficiency factor
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 Hongmei Li, et al., VLSI Symposium 2007
 Sungjae Lee, et al., IEDM 2007

2528.633.34050
Lpoly [nm]

Bulk

SOI

current efficiency m T

D

G n U
I
 



Low-power LNA design

ICLAB

Figure-of-Merit for Low Power RF
 The voltage gain and noise factor of a common-source stage loaded by a similar 

stage (i.e. having a fan-out 𝐹𝑂 equal to 1 and hence 𝐶 𝐶 ) are given by
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 A. Shameli and P. Heydari, ISLPED 2006
 T. Taris, et al., RFIC 2011
 A. Mangla, J.-M. Sallese and C. Enz, MIXDES 2011

 A FoM can be defined in order to maximize the gain-bandwidth product and 
minimize the noise factor at a given current

 This FoM is proportional to the 𝐺 𝐼⁄ · 𝜔 ratio, which is an important FoM for low-
power RF IC design
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The 𝒎 𝑫 𝒕 FoM is Maximum in Moderate Inversion
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The 𝒎 𝑫 𝒕 FoM vs. IC for 40nm and 28nm Bulk CMOS
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Combined FoMs vs. for 40nm and 28nm Bulk CMOS
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2.4 GHz LNA - CMOS 0.13µm

 T. Taris, et al., RFIC 2011  Courtesy T. Taris, Univ. of Bordeaux, France

Transistors are biased in MI region to maximise FoM
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Ultra Low Power LNA – Comparison with SOTA
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