Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 10: Model based RL

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2020)

License Information for Reinforcement Learning Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

- This class:
 - 1. Model-Based RL
- Next class:
 - 1. Deep Model-Based RL

Recommended reading

Chapter 8 in S. Sutton, and G. Barto, *Reinforcement Learning: An Introduction*, MIT Press, 2018.

Model-Based Reinforcement Learning

- Policy based methods: learn policy directly from experience
- Value based methods: learn value function directly from experience
- Model-Based RL: learn model directly from experience

Model-Based and Model-Free RL

- Model-Free RL
 - no model
 - learn value function (and/or policy) from experience
 - e.g., Monte-Carlo and TD
- Model-Based RL
 - learn a model from experience
 - plan value function (and/or policy) from model
 - e.g., Dynamic Programming

Model-Based and Model-Free RL

Model-Based RL[1]

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 31

Advantages of Model-Based RL

• Advantages:

- can efficiently learn model by supervised learning methods
- can reason about model uncertainty
- when dynamics are easy, can be more sample efficient
- once we have the model, we can do planning at decision time
- Disadvantages:
 - first learn a model, then construct a value function
 - two sources of approximation error
 - cumulative error for long horizons

What is a Model?

- A model \mathcal{M} is a representation of an MDP $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R})$, parametrized by η
- \bullet We will assume state space ${\cal S}$ and action space ${\cal A}$ are known

• So a model $\mathcal{M}_{\eta} = (\mathcal{P}_{\eta}, \mathcal{R}_{\eta})$ represents state transitions $\mathcal{P}_{\eta} \approx \mathcal{P}$ and rewards $\mathcal{R}_{\eta} \approx \mathcal{R}$:

$$S_{t+1} \sim \mathcal{P}_{\eta}(S_{t+1} \mid S_t, A_t)$$

$$R_{t+1} = \mathcal{R}_{\eta}(R_{t+1} \mid S_t, A_t)$$

• Typically assume conditional independence between state transitions and rewards

$$\mathbb{P}[S_{t+1}, R_{t+1} \mid S_t, A_t] = \mathbb{P}[S_{t+1} \mid S_t, A_t] \mathbb{P}[R_{t+1} \mid S_t, A_t]$$

Model Learning

- Goal: estimate model \mathcal{M}_{η} from experience $\{S_1, A_1, R_2, \dots, S_T\}$
- This is a supervised learning problem

$$S_1, A_1 \rightarrow R_2, S_2$$

$$S_2, A_2 \rightarrow R_3, S_3$$

$$\dots$$

$$S_{T-1}, A_{T-1} \rightarrow R_T, S_T$$

- \bullet Learning $s,a \rightarrow r$ is a regression problem
- \bullet Learning $s,a \rightarrow s'$ is a density estimation problem
- Pick loss function, e.g., mean-squared error, KL divergence, etc.
- Find parameters η that minimize empirical loss

Examples of Models

- Table Lookup Model
- Linear Expectation Model
- Linear Gaussian Model
- Gaussian Process Model

Table Lookup Model

- \bullet Model is an explicit MDP, $\hat{\mathcal{P}}, \hat{\mathcal{R}}$
- Count visits N(s, a) to each state action pair

$$\hat{\mathcal{P}}^{a}_{s,s'} = \frac{1}{N(s,a)} \sum_{t=1}^{T} \mathbf{1} \left\{ S_{t}, A_{t}, S_{t+1} = s, a, s' \right\}$$
$$\hat{\mathcal{R}}^{a}_{s} = \frac{1}{N(s,a)} \sum_{t=1}^{T} \mathbf{1} \left\{ S_{t}, A_{t} = s, a \right\} R_{t}$$

- Alternatively
 - At each time-step t, record experience tuple $(S_t, A_t, R_{t+1}, S_{t+1})$
 - To sample model, randomly pick tuple matching (s, a, \cdot, \cdot)

AB Example

• Two states A, B; no discounting; 8 episodes of experience

• We have constructed a table lookup model from the experience

Planning with a Model

- Given a model $\mathcal{M}_{\eta} = (\mathcal{P}_{\eta}, \mathcal{R}_{\eta})$
- Solve the MDP $(S, A, P_{\eta}, \mathcal{R}_{\eta})$
- Using any planning algorithm
 - Value iteration
 - Policy iteration
 - Generalized policy iteration

Sample-Based Planning

- A simple but powerful approach to planning
- Use the model only to generate samples
- Sample experience from model

$$S_{t+1} \sim \mathcal{P}_{\eta}(S_{t+1} \mid S_t, A_t)$$

$$R_{t+1} = \mathcal{R}_{\eta}(R_{t+1} \mid S_t, A_t)$$

- Apply model-free RL to samples, e.g.:
 - Monte-Carlo control
 - Sarsa
 - Q-Learning
- Sample-based planning methods are often more efficient

AB Example

- Construct a table-lookup model from real experience
- Apply model-free RL to sampled experience

Real experience

Sampled experience

• e.g. Monte-Carlo learning: V(A) = 1, V(B) = 0.75

Planning with an Inaccurate Model

- Given an imperfect model $(\mathcal{P}_{\eta}, \mathcal{R}_{\eta}) \neq (\mathcal{P}, \mathcal{R})$
- Performance of model-based RL is limited to optimal policy for approximate MDP $(S, A, P_{\eta}, R_{\eta})$.
- i.e. Model-based RL is only as good as the estimated model
- When the model is inaccurate, planning process will compute a suboptimal policy
- Solution 1: when model is wrong, use model-free RL
- Solution 2: reason explicitly about model uncertainty

Real and Simulated Experience

- We consider two sources of experience
- Real experience: sampled from environment (true MDP)

 $S' \sim \mathcal{P}^{a}_{s,s'}$ $R = \mathcal{R}^{a}_{s}$

• Simulated experience: sampled from model (approximate MDP)

$$S' \sim \mathcal{P}_{\eta}(S' \mid S, A)$$
$$R = \mathcal{R}_{\eta}(R \mid S, A)$$

Integrating Learning and Planning

- Model-Free RL
 - no model
 - learn value function (and/or policy) from real experience
- Model-Based RL (using Sample-Based Planning)
 - learn a model from real experience
 - plan value function (and/or policy) from simulated experience
- Dyna
 - learn a model from real experience
 - learn and plan value function (and/or policy) from real and simulated experience

Integrating Learning and Planning

Integrating Learning and Planning

 \bullet A learning algorithm can be substituted for the key update step of a planning method.

• Learning methods require only experience as input, and they can be applied to simulated experience just as well as to real experience.

Random-sample one-step tabular Q-planning

Repeat (forever):

- **1**. Select a state, $S \in S$, and an action, $A \in A(s)$, at random
- 2. Send S, A to a sample model, and obtain:

a sample next reward, $R_{\rm r}$ and a sample next state, S'

3. Apply one-step tabular Q-learning to S, A, R, S':

 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A)\right]$

• This method converges to the optimal policy for the model under the same conditions that one-step tabular Q-learning converges to the optimal policy for the real environment.

Dyna Architecture

Figure: Relationship between learning, planning and acting

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 31

Dyna-Q Algorithm

Tabular Dyna-Q

Initialize Q(s, a) and Model(s,a), for all $s \in S, a \in A$

Repeat (forever):

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \epsilon$ -greedy(S, Q)
- (c) Execute action A; observe resultant reward, R, and state, S^\prime

(d)
$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A)\right]$$

- (e) $Model(S, A) \leftarrow R, S'$ (assume the environment is deterministic)
- (f) Repeat n times:

 $S \gets \mathsf{random} \text{ previously observed state}$

 $A \gets \mathsf{random} \text{ action previously taken in S}$

 $R, S' \leftarrow Model(S, A)$

 $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A) \right]$

Example: Dyna Maze

- Consider the maze problem with obstacles as shown below:
 - ▶ four possible (deterministic) moves: up, down, left, right.
 - reward is zero for all transitions except for transitioning to goal, which is +1.
 - task is episodic and discounted with $\gamma = 0.95$, step size $\alpha = 0.1$, $\epsilon = 0.1$.

Example: Dyna Maze

Figure: Learning curve for Dyna maze example with varying planning steps.

Example: Dyna Maze

Figure: Policies for 0 planning steps and 50 planning steps

Dyna-Q with an Inaccurate Model

Figure: The changed environment is harder

Dyna-Q with an Inaccurate Model

Figure: The changed environment is easier

Dyna-Q+

- Dyna-Q+ uses an additional heuristic based on exploration/exploitation:
 - for each (s, a) pair, algorithm keeps track of the time passed since their last trial.
 - bonus reward for long-untested (s, a) pairs on simulated experiences.
 - ▶ r: simulated reward for a given pair (s, a)
 - τ : time until last trial of the pair (s, a)
 - bonus reward: $r + \kappa \sqrt{\tau}$, where κ is *small*.

References

[1] Richard S Sutton and Andrew G Barto.

Reinforcement learning: An introduction, volume 2. MIT press Cambridge, 2018.

