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I Last class:
I Model-Based RL

I This class:
I Model-based RL

1. Recap: Model Free vs. Model Based
2. State Abstraction
3. DeepMDP
4. Model-based deep reinforcement learning with theoretical guarantees

I Next class:
I Inverse reinforcement learning
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Recommended reading

I Chapter 8,9 in S. Sutton, and G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 2018.

I Gelada, Carles, et al. "Deepmdp: Learning continuous latent space models for
representation learning." arXiv preprint arXiv:1906.02736 (2019).

I Luo, Yuping, et al. "Algorithmic framework for model-based deep reinforcement
learning with theoretical guarantees." arXiv preprint arXiv:1807.03858 (2018).
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Motivation

Motivation
Can We use neural networks to learn our model in Dyna-style RL?
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Recap:Model Free vs. Model based

Figure: Dyna Architecture
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How does learning a model help learning?

1. When does using a model help? [6]
2. if state space is easily compressible, then doing the policy on an abstract model

space helps (remember DQN)
3. if dynamics are "easy" to learn, then we can "learn" a simulator and then learn

our policy on that with much less real samples
4. even if not, if horizon is small, small model errors might not hurt too much
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So what makes a "good" model?

1. State abstraction => what can we ignore without losing information moment to
moment?

2. Bisimulation metrics => what abstractions lead to the same behaviour in the
long run? [2]
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State Abstraction

Figure: Atari
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State Abstraction

• A state abstraction is a mapping φ that maps the original (or primitive/raw) state
space S to some finite abstract state space; for brevity we use φ(S) to denote the
codomain of the mapping. Intuitively, if s(1) and s(2) are mapped to the same
element, that is φ

(
s(1)
)

= φ
(
s(2)
)
, they are treated as the same state.

1. Policy irrelevant: φ is an επ∗ -approximate π∗-irrelevant abstraction, if there
exists an abstract policy π : φ(S)→ A such that

∥∥V ∗M − V πMM ∥∥
∞
≤ επ∗

2. Q irrelevant: φ is an εQ∗ -approximate Q∗-irrelevant abstraction if there exists an
abstract Q-value function f : φ(S)×A → R, such that

∥∥[f ]M −Q?M
∥∥
∞
≤ εQ∗ .

3. Model irrelevant: φ is an (εR, εP )-approximate model-irrelevant abstraction if for
any s(1) and s(2) where φ

(
s(1)
)

= φ
(
s(2)
)
, ∀a ∈ A

∣∣R (s(1), a
)
−R

(
s(2), a

)∣∣ ≤ εR, ∥∥ΦP
(
s(1), a

)
− ΦP

(
s(2), a

)∥∥
1
≤ εP

• When επ , εQ∗ , εR, εP = 0, it is exact abstraction without losing anthying.
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State Abstraction

• For the given (εR, εP ) of abstraction φ, we can bound the loss.∥∥∥∥V ∗M − V π∗
Mφ

M

∥∥∥∥
∞

≤
2εR

1− γ
+
γεPRmax

(1− γ)2

• Abstractions for Model-Based RL: Our goal is to choose an abstraction h from a
candidate set H so as to minimize the loss of the optimal policy for Mh

D. And [4]
shows this loss can be bounded.

Loss(h,D) =

∥∥∥∥V ∗M − V π∗
Mh
D

M

∥∥∥∥
∞

≤
2

(1− γ)2 (Appr(h) + Estm(h,D, δ))
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State Abstraction
• The bounding the loss of state abstraction should follow the Rate–distortion theory.

R(D) = min
p(z|x)=‖d(x,~x)|≤D

I(X; X̃)

Figure: RD lower Bound

• The information bottleneck method extends RD theor to prediction. The IB defines
relevant information according to how well a random variable Y can be predicted from
each x̃ ∈ X̃ , which implies the optimal trade off between compression and
performance.[1]

L[p(x̃|x)] = I(X̃;X)− βI(X̃;Y )
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State Abstraction[1]

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 19



State Abstraction
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So how can we actually learn these using neural networks?[3]

Figure: Diagram of the latent space losses

DIBS is one example, DeepMDP another. LR̄, LP̄ attempt to induce representations
which allow learning of approximately-bisimilar transition and reward dynamics in the
latent space w.r.t. the true MDP,i.e. "learning what matters".
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Model-based Deep Reinforcement Learning

Q:Now that we can learn good models, are we guaranteed a good policy?
A: Difficult question when using deep RL with deep representations!
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Model-based Deep Reinforcement Learning[5]

1. Iterative lower bound:
V π,M

∗
≥ V π,M̂ −D(M̂, π)

2. Neighborhood of a reference policy πref

V π,M
?
≥ V π,M̂ −Dπref ,δ(M̂, π), ∀π s.t. d (π, πref) ≤ δ (R1)

3. Vanished discrepancy bound

M̂ = M? =⇒ Dπref (M̂, π) = 0, ∀π, πref (R2)

Dπref (M̂, π) is of the form E
τ∼πref ,M?

[f(M̂, π, τ)] (R3)

where f is a known differentiable function.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 19



Model-based Deep Reinforcement Learning

Figure: Model-based iterative algorithm

Figure: Monotonical Iteration
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