
Name 1:
Name 2:

TCP/IP NETWORKING

LAB EXERCISES (TP) 4
DYNAMIC ROUTING (OSPF) AND SDN BASICS

With Solutions

November, 2020

Solution: Known bugs in this lab:

• For some weird reason, some students have issues with OpenVSwitch switches [2019].

– Symptom: If they run sudo mn (that runs the mininet default network), the console is stuck at
step Adding switches or Starting 1 switches.

– Reason: It means that they are unable to use openVSwitch, the specific reason is unknown.
– Solution: These students have the choice: either use the laptop of their team-mate for all labs

using mininet or they can use linux bridges, the following way:

* In all Python scripts they need to:
· add the line from mininet.nodelib import LinuxBridge
· change the line net = Mininet() by net = Mininet(switch=LinuxBridge)

* We don’t know any alternative to the OVS commands used in 6 BONUS: SOFTWARE
DEFINED NETWORKING, we added a note to ask the students to use another laptop.

• Some students had permissions issues with the lab4 folder on the desktop of the guest machine [2019].

– Symptom: “I have all ospfd processes running on routers, but none exchange of topology in-
formation happens, and all ospf databases remain empty.” https://moodle.epfl.ch/
mod/forum/discuss.php?d=22443

– Reason: These students have made the lab4 folder shared with their host machine. The in-
tended procedure for the lab4 folder was: place the lab4 folder in the shared folder, THEN
move it to the desktop of the guest machine, so that the resulting lab4 folder in the desktop of
the guest machine is NOT shared with the host machine. For students that made the lab4 folder
on the guest desktop shared with the host machine, it results in a permission issue that does not
allow ospf to write files in the folder, making ospf hang.

– Solution: The lab4 folder in the guest desktop should not be a shared folder with the host
machine.

1

https://moodle.epfl.ch/mod/forum/discuss.php?d=22443
https://moodle.epfl.ch/mod/forum/discuss.php?d=22443


1 LAB ORGANIZATION AND INSTRUCTIONS

1.1 LAB ORGANIZATION

In this lab, you will learn how to configure the OSPF routing protocol, which typically runs inside the
network of an autonomous system (AS). The protocol automatically sets up network routes that ensure
shortest path between two points in the network with respect to a predefined metric (such as number of
hops). You will configure a fully functional network using “Cisco-like” emulated routers. You will learn
how to configure a network of routers. Optionally (bonus exercise), you can learn about software-defined
networking (SDN) and study how it can be used to create forwarding rules on switches. You are strongly
advised to do this part as it gives you a good idea of how enterprise networks are managed today.

For this lab, you will be using the same Mininet on the virtual machine provided on Moodle (see Lab 0 for
installation instructions if need be).

The lab is meant to be done sequentially. Random access might give you different answers. We advise you
to do a section in one sitting. Restarting Mininet within a section might make the analysis difficult.

1.2 LAB REPORT

Type your answers directly in this document. We recommend you to use the latest or an updated version of
Adobe Reader to open this PDF, as other readers (such as SumatraPDF, but also older versions of Adobe!)
don’t support saving HTML forms. This will be your Lab report (one per group). When you finish, save the
report and upload it on Moodle. Don’t forget to write your names on the first page of the report.

The deadline is Wednesday, November 25 at 23:55.

2 FRROUTING: SOFTWARE ROUTING SUITE

The Internet core is run by powerful routers that can handle large amounts of traffic and are built by com-
panies such as Cisco, Huawei, or Juniper. Even in a large company, or in large university campuses (such
as EPFL), these routers are present. They use proprietary operating systems (such as Cisco IOS, or JunOS)
and can be accessed via control terminals tailored for network configuration, with commands that are quite
different from those you may encounter in a UNIX/Linux console. In this lab and in lab 6, we will give you
a flavour of router configuration.

Ideally, we would have liked to run Cisco IOS in a virtual environment. It is technically possible but not
legal, as Cisco or Juniper do not allow their OSs to be run on a device other than their routers. Therefore,
we will use FRR, a free software that implements and manages various IPv4 and IPv6 routing protocols. It
accepts similar commands to the ones in Cisco’s IOS.

2.1 WHAT IS FRR AND HOW DOES IT WORK?

FRR is a routing software suite that provides implementations of several routing protocols (namely OSPF,
RIP, and BGP-4) for Unix platforms. The architecture of FRR is shown in Figure 1.

As depicted in the figure, it consists of a handful of processes that can be run in the background as daemons.
Three FRR processes (daemons) are important for executing this lab:

• zebra: is used to manage the network interfaces of a machine (in our case, each router will run in the
virtual machine). It allows you to configure them (using IPv4 and/or IPv6 addresses), to monitor their
states, and it provides a more detailed view of the routing tables than the route -n command. In a

2



UNIX Kernel routing table

Zebra

bgpd ospfd ospf6d

Figure 1: FRR Architecture

way, zebra is a replacement for the Linux networking commands used during the first three labs (i.e.,
ifconfig, route, etc.).

• ospf : handles OSPF version 2 implementation.
• ospf6d: handles OSPF routing for IPv6.

3 SCENARIO: A GAME OF ROUTERS

With the impending attack of the White Walkers on Westeros, all the kingdoms must unite in the fight for
the living. As the lands of men stretch from Winterfell in the North to Valyria down in the South, the
wise maesters at the Citadel have realized that their communication network with carrier ravens will not be
sufficient to communicate for large distances in short time.

After several sleepless nights in the Citadel, Maester Illyrio Pycell and his intern Samwell Tarly have de-
signed the communication mechanism, called TCP/IP. Together, they setup routers and switches at strategic
locations in Westeros as shown in Figure 2. There are a total of 5 routers r1-r5 placed at Winterfell, Braavos,
Valyria, Casterly Rock, and King’s Landing, respectively. Samwell has connected the routers through 7
switches as shown in the figure. He has also configured the routers with the IP addresses as shown in the
figure. Note that, all IP Addresses for router rx end in x.

Sam’s configuration scripts are available in the lab folder. To be consistent with the paths in this document
and in the scripts, please place the uncompressed folder directly in the Desktop of the virtual machine and
be sure to name it lab4 (case-sensitive). Run lab4 network.py as root from a terminal of your virtual
machine, to recreate the established topology. See the output of the net command in the Mininet prompt
and verify whether the connections in the created network correspond to the ones of Figure 2. Use the
pingall command in the mininet prompt.

Q1/ What percentage of the 78 possible combinations of connections (between 8 hosts and 5 routers) in
Westeros are functional (approximated to the nearest integer)? Explain why you can or cannot ping some
or all of them. Hint: Check the Python script that creates the network topology.

Solution: 22% (17 out of 78)
In our python script, we are only configuring/assigning one IP address per router and host. In the case of
h1 and r1, we assigned the ip addresses that belong to the same LAN. We don’t have other connectivities
because we have not configured all the interfaces of different hosts and routers (except one interface at
each host and router) and we have not enabled static or dynamic routing at the routers.

3



10.10.35.0/24
2001:1:0:35::/64

Figure 2: Networking in Westeros

In the next section, your job is to help Sam with the configuration of the network so that all kingdoms can
talk to each other.

Each router is, in essence, a Linux machine, thus they can be configured the same way. This means that you
could reuse the same set of commands that you used for previous labs, e.g., to configure network interfaces,
to monitor their states, to inspect the contents of the routing tables, etc. However, instead of the set of Linux
networking commands, in this lab, you will be using the tool suite from FRR. Documentation can be found
on the FRRouting website (www.http://docs.frrouting.org).

4



4 HOST NETWORK CONFIGURATION WITH FRR

In principle, you could create a topology without FRR, launch a terminal window for each router, and
configure its network interfaces using the ip addr command (following the scheme shown in Figure 2).
However, in this lab, we will be using the zebra daemon instead.

Note: Never try to configure the network interfaces on a machine using both the ip addr command and
zebra daemon, as interaction between the two is not always clear and the outcome may be uncertain.

4.1 CONFIGURING INTERFACES USING CONFIGURATION FILES

Before running your topology script, a configuration file must be created and edited at least for the zebra
process. Script 1 is an example of such a file written for router r3. This file can be found among setup files
available on Moodle in the lab4/configs folder.

Script 1: Zebra configuration file for r3: zebra r3.cfg

1 hostname r3
2 password z e b r a
3 e n a b l e password z e b r a
4

5 l o g f i l e / home / l c a 2 / Desktop / l a b 4 / l o g s / z e b r a r 3 . l o g
6 debug z e b r a p a c k e t
7

8 i p f o r w a r d i n g
9 i pv6 f o r w a r d i n g

10

11 i n t e r f a c e r3 − e t h 1
12 no shutdown
13 i p a d d r e s s 1 0 . 1 0 . 2 3 . 3 / 2 4
14 i pv6 a d d r e s s 2 0 0 1 : 1 : 0 : 2 3 : : 3 / 6 4
15

16 i n t e r f a c e r3 − e t h 2
17 no shutdown
18 i p a d d r e s s 1 0 . 1 0 . 3 5 . 3 / 2 4
19 i pv6 a d d r e s s 2 0 0 1 : 1 : 0 : 3 5 : : 3 / 6 4

Let’s examine the content of this configuration file:

• !: the lines starting with ! are comments, they are ignored;
• enable password: this creates a password for “on the fly” configuration of the zebra process, in

this case the password is set to zebra;
• log file: Allows you to specify the file to which zebra related information is logged (adding,

deleting routes in principle). Make sure you write the full path to the file as it could prevent the
FRR service from starting;

• debug zebra packet: more detailed debugging, i.e., allows you to see when routes are added
or deleted from the routing table;

• ip forwarding: This instructs the zebra process to enable IPv4 routing on the router;
• ipv6 forwarding: This instructs the zebra process to enable IPv6 routing on the router;
• interface <interface name>: this command starts the interface configuration mode;
• ip address: assigns an IPv4 address to the selected interface;
• ipv6 address: assigns an IPv6 address to the selected interface;

We already created all the configuration scripts for the routers r3, r4, and r5, you can find them in the folder
we provided. You can now create the configuration scripts for the routers r1 and r2.

5



You should now have all the following files: zebra r1.cfg, zebra r2.cfg, zebra r3.cfg, zebra r4.cfg,
zebra r5.cfg. For consistency with the paths of the proposed commands and with the paths of the log
files, it is highly recommanded that you copy your lab4 folder to your Desktop. This folder contains the
configs folder, the topology script, an empty logs folder and an empty run folder. Each time you
launch the simulation, the logs and run folders must be empty and the configs folder must contain
only the .cfg files. The topology script erases the content of the logs and run before creating the topol-
ogy. If you wish to stop the mininet simulation, type exit in the mininet prompt and clear the cache with
the following command:
sudo mn -c.

Activate the zebra daemon at router r1 with the following command:

zebra -d -f /home/lca2/Desktop/lab4/configs/zebra r1.cfg -i
/home/lca2/Desktop/lab4/run/zebra r1.pid -z /home/lca2/Desktop/lab4/run/frr r1.api
-u root -k

Note that in order to paste a copied command in a terminal, you should click on the middle-button of your
mouse on the terminal. Further note that an error can be due to copy-pasting characters from a pdf (empty
spaces may include hidden invisible characters which the terminal does not understand). Do the same for
all routers.

We have manually started the zebra daemon on each router. In order to prevent re-writing this com-
mand at each router at each simulation, you may update the python script that creates the network topolgy
Lab4 network.py in order to make the process start automatically at all routers. This can be done by
updating the script with commands as such:

<routerID>.cmd(’<command>’)

where <routerID> is r1, r2, r3, r4 or r5 and <command> is the command you would type on the router’s
terminal.

Check that zebra is running for all routers by checking the list of all running processes in the VM: you can
do so with the following command: ps -A, if you wish to restrict the list to only zebra processes type the
following: ps -aux | grep zebra. Observe that each process has a PID, if you wish to stop a process
, the command is: kill < PID >. If you want to stop all zebra processes, you can do so with the
following: kill $(ps -aux | pgrep zebra), pgrep directly extracts the PIDs. Note that processes
running for mininet entities such as r1, are in fact running on the VM, hence by terminating the mininet
simulation, processes don’t stop automatically. Make sure that you kill them all before launching new
simulations, you can add this command in the script to be executed at the beginning of each new simulation.

4.1.1 MONITORING MODE

In order to monitor the activity of a running process, e.g., zebra, you can enter the monitoring mode by
connecting to it using the following command in the terminal of a router.

6



telnet localhost zebra

Th password is zebra. Let us see what information can be obtained now. To inspect the contents of the
IPv4 and IPv6 routing tables type show ip route and show ipv6 route respectively. At all times,
you can view the entire list of the commands at your disposal using list.

Q2/ What subnets can be found in the two routing tables on r3 at this point?

Solution:
10.10.23.0/24
10.10.35.0/24
2001:1:0:23::/64
2001:1:0:35::/64
fe80::/64 (r3-eth1 link local)
fe80::/64 (r3-eth2 link local)
These are the same routes that you find if you do a ip route or ip -6 route commands from the linux terminal.

Next, check the status of the network interfaces by typing show interface command.

To view the current running configuration, you need to first enable the configuration mode using

enable

The password for the configuration mode is zebra. Finally, inspect the running configuration of the router
r3 using the show running-config command and verify if it is the same as the one you used.

4.2 CONFIGURING OSPF

The ospfd process implements OSPFv2 that is defined in RFC 2328. Similar to the zebra process, the
ospfd process can be configured by editing a configuration file or “on the fly”. However, in this lab, we
will not configure it “on the fly”. Like the zebra configuration files, we are providing the “ready-to-use”
ospfd ri.cfg, i=3,4,5 configuration files. We give an example of ospfd r3.cfg configuration
file in Script 2.

Script 2: Ospfd configuration file for r3: ospfd r3.cfg

1 hostname r3
2 password o s p f d
3 e n a b l e password o s p f d
4

5 l o g f i l e / home / l c a 2 / Desktop / l a b 4 / l o g s / o s p f d r 3 . l o g
6

7 debug o s p f e v e n t
8 debug o s p f p a c k e t a l l
9

10 r o u t e r o s p f
11

12

13

14 ne twork 1 0 . 1 0 . 2 3 . 0 / 2 4 a r e a 0
15 ne twork 1 0 . 1 0 . 3 5 . 0 / 2 4 a r e a 0

7



Let’s have a closer look at the commands in the file above (you are already familiar with some of them):

• log file: Same as with zebra, it specifies the file to which the OSPF related information is
logged;

• debug ospf event: less detailed debugging, i.e., only the coarse events, such as sending and
receiving OSPF updates, can be seen;

• debug ospf packet all: more detailed debugging, i.e., allows you to see the content of the
sent and received OSPF updates;

• router ospf: enables the ospfd process;
• network: assigns an area to a particular network segment.

Using the example configuration file shown above and the address scheme of Figure 2, create the ospfd con-
figuration files for the routers r1 and r2 and place them in the same folder /home/lca2/Desktop/lab4/configs/.

In this section, you must have zebra running on all routers and ospfd running on all routers except r4.
In order to start the ospfd process at router r1 type the following command at r1’s terminal:

ospfd -d -f /home/lca2/Desktop/lab4/configs/ospfd r1.cfg -i
/home/lca2/Desktop/lab4/run/ospfd r1.pid -z /home/lca2/Desktop/lab4/run/frr r1.api
-u root

Again, make sure that all processes are running by checking the list of running processes.

Q3/ Open wireshark on router r2. By looking at the exchange of packets, how is the routing information
between routers exchanged (i.e., by using broadcast, unicast or multicast)? Open the lab4/logs/ospfd.log
file on router r2 and compare to what you see in Wireshark. Write the line from the log file that confirms
your observation in Wireshark.

Solution: The packets are exchanged by multicast.
2019/08/19 15:06:09 OSPF: Hello sent to [224.0.0.5] via
[r2-eth1:10.10.12.2].

Q4/ Check the lab4/logs/ospfd.log file on router r2. How does r2 identify r1?

Solution: Through its OSPF Router-ID: 10.10.12.1 using the hello protocol. (This answer could be
different for different students, but it has to be one of the IP addresses of r1.)

4.2.1 MONITORING COMMANDS

We have seen before that we can use command ip route show to display the IPv4 routing table. Now,
we will see how this information is stored and managed by OSPF. OSPF stores all information about the
networks it knows about in the OSPF database. An OSPF router also maintains a list of neighbours from
whom, it expects periodic updates called link state advertisements (LSAs).

We will start by inspecting the neighbors of r3. For this, you can enter the monitoring mode of the ospfd
daemon. This is done in the same way as for the zebra process (i.e., telnet localhost ospfd). The
password is ospfd. After that, you can display the content of the OSPF database using the command:

8



show ip ospf neighbor

Q5/ How many OSPF neighbors does r3 have? What are their ids? Identify which of those are designated
routers (DRs) and which ones are Backup designated routers (BDRs)?

Solution: Two neighbours.
10.10.23.2
10.10.45.5 Depends. For me, all of them were DRs.

Q6/ What does the column Dead Time represent? Hint: Launch the above command several times. How is
it related to the hello timer? Can you infer the values of the dead time and the hello timer?

Solution: Dead time is the time after which the neighbour is considered dead and all its LSAs are removed
from the database. Hello timer is the time after which it expects a hello message. 4 consecutive hellos lost
means dead.
40 s and 10 s.

Next, we will look at the LSAs in the database of routers. For this, you can use the following set of
commands.

show ip ospf database
show ip ospf database network
show ip ospf database router
show ip ospf database self-originate

Q7/ What are the network LSAs advertised by r3? How is this related to the answer to question 5?

Solution: This answer depends on Q5. Basically, r3 advertises the network LSAs for which it is a DR,
hence in our case, no network LSA is advertised by r3.

Q8/ What are the prefixes that r1 advertises to r2 in its router LSA? Explain the difference.

Solution: To find this out, first check the type of the self-originating LSAs at r1. It will be a router LSA.
Then look at the router LSA database of r1. You will find three networks: 10.10.11.0, 10.10.12.1, and
10.10.14.0. One is a transit and the other two are stub. It’s because r4 is not yet an OSPF router as we
have not yet run the ospf daemon on it.

Q9/ How many network LSAs and router LSAs are present in the OSPF database of r3? Explain why?

Solution: There are 4 router LSAs and 4 network LSAs.

9



Each router advertises 1 LSA. As there are 4 OSPF routers, we have 4 router LSAs.
Each transit network has one LSA that is advertised by the designated router of the LSA. As there are 4
transit networks, there are 4 network LSAs.

John wants to see how far they are from their friends Jorah (h2) and Tyrion (h3) currently travelling through
Valyria, accessible from network 10.10.35.0/24. From router r1, use the show ip ospf route com-
mand.

Q10/ What is the cost from r1 to reach the Valyrian network? For this cost, what are the possible routes?

Solution: The cost from r1 to the Valyrian network is 30, it goes through r2 and then either r3 or r5.

Note that h2 and h3 are both on the Valyrian network and that h1 is on network 10.10.11.0/24, thus packets
between h1 and hosts from the Valyrian network should behave in a similar fashion. Do traceroutes from
h1 to all hosts on Valyrian network.

Q11/ Do all traceroutes show the same path? Give proportions and explain your observations.

Solution: All traceroutes don’t show the same path, some routes go through r3 while others go through r5,
in our case the proportions are exactly 50 − 50% but they could be different for each student. We can also
observe that the traceroutes from John to h2 and h3 don’t take the same route (this also depends, might
not be the case for all). This is because of Equal Cost Multipath (ECMP) behavior in Linux machines. A
(uniform) hash function is applied on the { ip source, ip destination} tuple to select the next hop. Hence
each tuple is randomly attributed to a next hop, which ensure some load balancing of the two equal cost
paths. See https://codecave.cc/multipath-routing-in-linux-part-2.html

4.3 CONFIGURING OSPF6D

OSPF for IPv6 was defined in the RFC 2740 and is known as OSPFv3. It is an IPv6 reincarnation of the
OSPF protocol.

As multiple routing protocols can run in parallel on the majority of routers, FRR allows you to config-
ure OSPFv3 in parallel to OSPFv2. Just like zebra and ospfd processes, the ospf6d process can be
configured by editing a configuration file or via telnet.

As in the case of ospfd, we are providing the ospf6d configuration files for the routers r3, r4 and r5.
The configuration file of ospf6d is a little different from that of ospf. Below, we explain the file
ospf6d.conf on r3.

Script 3: Example of an ospf6d.conf file

1 hostname r3
2 password os p f 6d
3 e n a b l e password o sp f 6d
4

5 l o g f i l e / home / l c a 2 / Desktop / l a b 4 / l o g s / o s p f 6 d r 3 . l o g
6 debug o s p f 6 n e i g h b o r

10

https://codecave.cc/multipath-routing-in-linux-part-2.html


7 debug o s p f 6 i n t e r f a c e
8

9 i n t e r f a c e r3 − e t h 1
10 i pv6 o s p f 6 i n s t a n c e − i d 1
11

12 i n t e r f a c e r3 − e t h 2
13 i pv6 o s p f 6 i n s t a n c e − i d 1
14

15 r o u t e r o s p f 6
16

17 i n t e r f a c e r3 − e t h 1 a r e a 0 . 0 . 0 . 0
18 a r e a 0 . 0 . 0 . 0 r a n g e 2 0 0 1 : 1 : 0 : 2 3 : : / 6 4
19

20 i n t e r f a c e r3 − e t h 2 a r e a 0 . 0 . 0 . 0
21 a r e a 0 . 0 . 0 . 0 r a n g e 2 0 0 1 : 1 : 0 : 3 5 : : / 6 4

To configure ospf6d, you need to first specify the interfaces on which you wish to enable OSPFv3. Then,
you need to configure the OSPF area and network those interfaces belong to. The commands are.

• interface <interface-name>: Enable OSPFv3 on this interface.
• interface <interface-name> area <A.B.C.D>: Assigns the interface to a given area.

Notice that although it is an IPv6 service, it uses a 32-bit area code that is represented in the dotted
decimal format.

• area <A.B.C.D> range <IPv6 network with mask>: Specifies which networks belong
to a given area.

The configuration scripts of r1 and r2 are left for you to create. You should place them in the same
folder as earlier /home/lca2/Desktop/lab4/configs/.

In this section, you must have zebra running on all routers, and ospfd and ospf6d running on all routers
except r4. In order to launch ospf6d on r1, you can type the following command at the terminal of the
router:

ospf6d -d -f /home/lca2/Desktop/lab4/configs/ospf6d r1.cfg -i
/home/lca2/Desktop/lab4/run/ospf6d r1.pid -z /home/lca2/Desktop/lab4/run/frr r1.api
-u root

Again, make sure that all processes are running by checking the list of running processes.

4.3.1 MONITORING COMMANDS

To inspect the ospf6d database, you should execute the command: telnet ::1 ospf6d. To display
the content of the OSPF routing table:

show ipv6 ospf6 route
show ipv6 ospf6 route detail

Now, explore by yourself, the available monitoring commands. Recall that you can press ? at any time to
list the possible commands at an instant.

11



Q12/ Check the SPF tree of r3. Write the used command. In ospf6d, what are the costs for a packet to go
from a network to a router and a router to a network?

Solution: The command to check the spf tree is show ipv6 ospf6 spf tree and we observe that:
Network to router: 0
Router to network: 10.

12



5 OSPF PLAYGROUND

In this section you will be confronted with a number of situations that might arise in an OSPF network.
Answering the questions will allow you to better understand ospfd and ospf6d, and dynamic routing in
general. You can use two terminals, one for the FRR process commands and one for the Linux commands.
To have a second xterm window for xterm r1, you can type: xterm r1 in the mininet> prompt.

5.1 UNDERSTANDING NEIGHBORS IN OSPF

In this section, we will learn about how neighbors interact within OSPFv2 (ospfd).

Now, restart the Mininet network using the python lab4 network.py command. Don’t forget to
clear the mininet cache before restarting the network. If you did not enable the automatic start of zebra at
all routers, manually do so at all routers. Activate ospfd at all routers except r4.

The next couple of questions will require the comparison of the OSPF database on r5 before and after
launching the ospfd process on r4. Take a snapshot of the database for your reference. Specifically, show
ip ospf database, show ip ospf database router, and show ip ospf database network.
Now, we will see how OSPF routers are synchronised. Now, launch the ospfd and ospf6d processes on
r4. This will make r4 an OSPF router. Let this time be t1.

Q13/ Does r4 appear in the neighbor list of r5? What’s r4’s neighbor state at r5? What are the possible
states of an OSPF neighbor finite state machine?

Solution: Yes, with state Full.
In total, there are 8 states: DOWN, ATTEMPT, INIT, 2-WAY, EX-START, EXCHANGE, LOADING and
FULL. https://cyruslab.net/2012/04/01/ospf-finite-state-machine/

Q14/ What changes do you notice in the OSPF database at r5? Explain the reason for each of the changes.

Solution: We see three new router LSAs from r1, r4, and r5. r1 and r5 advertise a change in their
connected networks, i.e., the change in networks 10.10.14.0 and 10.10.45.0 from stub networks to transit
networks. r4 on the other hand is just announcing its presence for the first time.
As there are two new transit networks, we also see two network LSA for networks 10.10.14.0 and 10.10.45.0.

5.2 MODIFIED LINK METRIC

OSPF works by constructing a shortest path tree. By default, in OSPFv3, the directly connected subnets are
treated as having the distance equal to 10. Each additional “hop” (router) adds 10 to this distance metric.
Nevertheless, ospf6d offer you the possibility to modify the metric of an arbitrary link, changing the
desirability of the routes that contain this link.

Cersei (at King’s Landing in r1), being the paranoid queen, wants to know if Dany is talking to Jorah behind
her back. So, she orders that the (one way) IPv6 traffic from h4 to h2 to go via r1 instead of the direct route.
To fulfill this task, you need to modify the cost of the link between r2 and r5 so that the total cost of routing
through r2 → r1 → r4 → r5 is less than the direct route. The cost of an interface is set in the interface
setup. The syntax for specifying cost is

13

https://cyruslab.net/2012/04/01/ospf-finite-state-machine/


ipv6 ospf6 cost x

Q15/ Describe the minimal set of changes to the configuration of router r2, router r5, or both of them, to
achieve the desired affect. Write the modified configuration file(s).

Solution: We need to make two changes to r2 on r2− eth2 and r2− eth3
For interface r2− eth2 add ipv6 ospf6 cost x
For interface r2− eth3 add ipv6 ospf6 cost x
where x must be a value strictly higher than 30.

5.3 BROKEN LINK

John’s dragon Drogon sometimes gets restless and burns things down. In one such incident, he burnt down
the link between SW2 and r1. To simulate the broken link between r1 and r2, shutdown the r1-eth1
interface on r1. To do this, type on r1 the following commands:

telnet localhost zebra
enable
configure terminal
interface r1-eth1
shutdown

Note that it is convenient to use the “on the fly configuration” here.

Q16/ Observe the changes in the OSPF database at r2. Explain what happens.

Solution: After the expiration of the Dead timer of 40s, the network LSA from 10.10.12.0/24 is marked
invalid by setting its age to maxAge of 3600 because this network is no longer a transit network. As there is
a change in the connected links of r1, it sends a new LSA which is updated in the router LSA section of r2.
Moreover, the network LSA for r1 is also removed from the database of r2 after 40-60s (Wait timer).

The crash of an OSPF process also has a similar behaviour but on all interfaces instead of just one.

Q17/ Can you ping the IPv4 address of r1− eth1? Explain.

Solution: No, we can’t ping as the interface is down.

Q18/ Instead of a broken link, if we were to comment out (using “!” at the beginning of the line) the
network 10.10.12.0/24 from r1 (in its ospfd configuration file), could you then ping the IPv4
address of r1− eth1. Explain.

Solution: Yes, it pings. Indeed, r1 is not announcing anymore a route toward 10.10.12.0/24, but r2

14



continue announcing that it has route toward this network. Thus, thanks to OSPF, r1 − eth1 is reachable
through r2.

Q19/ In the case of not breaking the link and simply commenting out network 10.10.12.0/24 from
r1, conclude how does the OSPF protocol sees the connection between r1 and r2? What paths do packets
from r2 to h1 and r3 to h1 take?

Solution: OSPF sees two different routers with a common prefix (10.10.12.0/24), and these two
routers have no communication between each other. Therefore, r2 has to take the route announced by
r5 as the only choice to go to any of r1’s networks (other than 10.10.12.0/24, as r2 has it directly
connected) and installs the networks to 10.10.11.0/24 and 10.10.14.0/24 through r5.
r2→ r5→ r4→ r1→ h1
r3→ r5→ r4→ r1→ h1

15



6 BONUS: SOFTWARE DEFINED NETWORKING

For students who could not run openVSwitch switches in the previous labs (and were using LinuxBridges),
please do this part with your teammate’s computer or contact the TAs to set up an alternative.

Software defined networking (SDN) is an approach to TCP/IP networking that allow network administrators
to manage services through flexible interfaces provided by a control-layer. A typical SDN network consists
of routers or switches interconnected, each of them with a “listener” daemon running in which they receive
forwarding-decision rules, called flows, from one (or many) controller(s) using, for example, the OpenFlow
protocol. The network administrators make changes to the controller and these changes are disseminated
through the control-layer (typically another IP-based connection) so that appropriate routing/switching de-
cisions can be applied.

The Mininet virtual environment used in this lab is compatible with SDN. In fact, the openVSwitch (OVS),
which is the switch we have been using so far in this lab, is a software listener switch that is controlled using
the OpenFlow protocol. The central controller that comes with Mininet has no special features or policies,
which make the openVSwitches used in the virtual environment, to behave as a basic L2-switch.

In order to explore SDN, we need a new controller. We will use the RYU controller 1, which is an open-
source controller written in Python. In the lab4/SDN folder, unzip the file ryu.zip where you will find
the source files of RYU. If you followed the path consistency instructions, the command

cd /home/lca2/Desktop/lab4/SDN && unzip ryu.zip

should unzip the folder. Otherwise, make sure the uncompressed folder is located in the SDN folder and
its name is ryu (case-sensitive). Run the script install ryu.sh as root on your virtual machine to
install RYU. You can check if RYU is properly installed by trying out the command ryu-manager -h.
It should print the help menu without any errors.

In Mininet, the configuration changes for using an external controller are minimum. Basically we need to
call the RemoteController class by importing it from mininet.node, and then when we call the
constructor Mininet, we pass the attribute controller=RemoteController. With this configura-
tion, the switches will look on the VM’s loopback address (default port 6633) for the controller.

The topology for this section is composed of 5 switches and is depicted in Figure 3. The script lab4_sdn.py
(available on Moodle) has been created for you to match the topology described.

Q20/ How many subnets are there in Figure 3?. What would be the correct network mask for each IP
address?

Solution: There is only one single subnet, thus all IP addresses should share a common prefix. The one
used in this section is /16, but any prefix up to /21 is valid.

6.1 CONTROLLING THE OPENFLOW SWITCH IN STANDALONE MODE

The OVS switch comes with the ovs-ofctl utility, which uses the terminal prompt to send basic Open-
Flow messages, for basic configuration and retrieving important information such as installed flows, port
information, dump statistics, etc. To display a complete list of the commands (with a brief description of
what it does), type the ovs-ofctl -h command from a terminal prompt. Note that Mininet also comes

1https://osrg.github.io/ryu/

16

https://osrg.github.io/ryu/


Figure 3: Lab 4 SDN topology

with a similar utility called dpctl, which has a short version of the ovs-ofctl utility. Unlike the latter,
dpctl is available through the mininet> prompt.

Let’s analyze the behavior of the OVS switch in the absence of the controller. Run the lab4_sdn.py
script. Now, from h4 try to make three pings to h5:

mininet>h4 ping -c 3 h5

The pings are unsuccessful as the switches in the network don’t know what to do with the incoming packet.
Now, let’s use the ovs-ofctl utility to help h4 and h5 communicate. From a new terminal prompt (from
Linux, not Mininet), type the following commands:

sudo ovs-ofctl add-flow SW4 in port=1,actions=output:3
sudo ovs-ofctl add-flow SW5 in port=3,actions=output:1

From the commands above:

• add-flow: refers to the command we are sending to the OVS switch, other options are del-flow,
dump-flows, dump-port, mod-port, etc.

• <switch>: refers to the OVS switch we would like to send the message to. By default it resolves
the names of the switches that are in the same machine, for others we need to specify IP address and
TCP port.

• in port=1: we tell the OVS switch on which port it should apply the flow to, in the inward direction.
• actions=output:3: we tell the OVS switch, what are we doing with packets matching the flow

statement. In this case, we just send it out through a particular interface. Other options include
flooding to all ports, setting a new next-hop, changing a particular field in the IP packet (priority,
TTL, flags), etc.

17



Q21/ Apply the ovs-ofctl commands and test the ping command again. Does it work? Explain what is
happening and which commands (if any) would help you fix the problem. Hint: use wireshark to check for
packet arrival

Solution: In h5, we see ARP request arriving from h4 and we see that h5 replies to these packets. In h4 we
do not see any ARP reply, only ARP requests. We can suspect there is traffic flowing in one direction thus
we are missing flow configuration in the reverse path. By applying the following commands, the ping starts
to succeed:

sudo ovs-ofctl add-flow SW5 in port=1,actions=output:3
sudo ovs-ofctl add-flow SW4 in port=3,actions=output:1

6.2 CONTROLLING THE OPENFLOW SWITCH USING RYU

Now it is time to use a remote controller. Before continuing, make sure you erase all flows from SW4 and
SW5 by issuing the command ovs-ofctl del-flows <switch> from a Linux’s terminal window
(as root).

Stop the simulation in Mininet and start the RYU controller using a separate Linux’s terminal window:

sudo ryu-manager ryu.app.simple switch 13 ryu.app.ofctl rest

The above command runs the RYU controller with the simple_switch_13 applications. Leave it run-
ning on a separate terminal. Applications are “functionality add-ons” that are loaded onto the RYU con-
troller, as the controller itself doesn’t do much. In particular, the simple_switch application is the same
as the one that comes as default component in Mininet’s controller implementation, makes the OpenFlow
switches to act as a “type” of layer-2 learning switch. The application learns MAC addresses, and the flows
it installs are exact-matches on as many fields as possible. Therefore, for different TCP/UDP connections
between two hosts, you will have different flows being installed.

We have also specified the use of application ofctl rest. This application is used by RYU to access
the flow tables of the switches. This allows RYU to write to the switches and read from them. The RYU
controller comes with a few other applications that are located in the

/home/lca2/Desktop/lab4/SDN/ryu/ryu/app folder.

For all cases, start the RYU controller first, and then start Mininet by running lab4_sdn.py. In this way,
you can see the progress of all logs from the switches in the RYU controller console, which will be helpful
to answer many questions in this section.

With the controller started, the OVS switches should now have automatic flows installed for every packet
and all hosts should be reachable. From the mininet> prompt, do a h4 ping -c 1 h5 command.

Q22/ Why do you think ping was unsuccessful?

Solution: The topology includes loops. In normal switches loops are handled by the Spanning-Tree

18



Protocol (STP). As the simple switch 13 application does not implement any STP, the loop in
the network makes packets to multiply exponentially, causing a congestion.

Use the ovs-ofctl show <switch> and ovs-ofctl dump-flows <switch> commands (from
Linux’s terminal) and notice the flows in the switches. Now, stop the RYU controller by using Ctrl + C
in the Linux terminal window. Next, let’s explore a different application.

Now, start the RYU controller using the following command:

sudo ryu-manager ryu.app.simple switch stp 13 ryu.app.ofctl rest

Wait around one minute and keep looking at the output from the RYU controller. Do pingall from the
Mininet prompt.

Does it work now? Use the ovs-ofctl show <switch> and ovs-ofctl dump-flows <switch>
commands (from Linux’s terminal) and try to discover how the simple switch stp component solves
the previous problem.

Q23/ What changes are made to the ports of the switches?

Solution: The app implements the STP which uses the switch with lowest dpid as the root and from there
builds a spanning tree. Then, any link that does not belong to the tree is given the command no-flood,
which logically breaks the loops. Note that in this case, it is the RYU controller that is computing the
spanning-tree protocol (STP), as opposed to enterprise-class switches where they perform the STP locally,
and only then they try to reach the controller for further configuration.

Q24/ What is the root of the spanning tree? How many ports of the switches are closed? Verify if the tree is
a valid minimum spanning tree. Write the path that flows take to reach h4 from h5.

Solution: The root of the spanning tree is SW1, you can find it by searching the logs. 2 ports are closed.
SW2−−SW3 and SW4−−SW5. The path is h4→ SW4→ SW2→ SW1→ SW3→ SW5→ h5

19


	Lab Organization and Instructions
	Lab Organization
	Lab Report

	FRRouting: Software Routing Suite
	What is FRR and how does it work?

	Scenario: A Game of Routers
	Host network configuration with FRR
	Configuring interfaces using configuration files
	Monitoring Mode

	Configuring OSPF
	Monitoring commands

	Configuring OSPF6D
	Monitoring commands


	OSPF Playground
	Understanding neighbors in OSPF
	Modified link metric
	Broken link

	Bonus: Software Defined Networking
	Controlling the OpenFlow Switch in standalone mode
	Controlling the OpenFlow Switch using RYU


	Name 1:: 
	Name 2:: 


