Linear Classification

Pascal Fua
|C-CVLab

Reminder: Linear 2D Model

Some algorithm bm] htne SS
g length

A y(X; w) = sign(w,b + Wyl + W)
length
X = [b,]]
W = [Wxa Wya W()]
o> +1
@ > -1
\Y~" brightness >
How do we find w?
EPEL _

Reminder: Training vs Testing

Supervised training:

Given a training set {(x,,t,)1<n<n } minimize: A o .
- length ° 0 o0
0 o 09
N
o o©%o0 80
E(W) — ZL(y(XnQW)atn) ¢ o %o
n=1 .. O 0
N o ° 0°
— Z[Q(Xn; W) # Ly o - >
n=1 brightness
Testing: A
length 0
O
Given a test set {(xy,%n)1<n<n} compute the error rate:
N o °
1/N Z[y(xn§ W) # ty] <
n=1

Mnm
:U
i
r

brightness 5

Parameterizing Lines

Equation of a line Normal vector

>
> u

0 n= (a, b]
Va2 + b2

(u,v) € R, au+bv+c=0

|
la, b, c] and [a, b, c] define the same line.
Va2 + b2

Mnm
:U
i
r

Normalized Parameterization

Equation of a line

~
rd

u

(u,v) € R, au+bv+c=0
with a? + b? = 1

m
v
"N
r

Normal vector

n = [a,b]

Signed Distance to Line

A Q [ul, V1]

Signed distance: 7 =n - [u; — ug, v; — v,)
= a(ul - uo) + b(Vl - VO)
= au; + bv, — (auy — bvy)
= au; +bv, +c — (auy— bvy—c)

=au;+bv,+c

Mnm
:U
i
r

h=0: Point i1s on the line.
h>0: Point on one side.
h<0: Point on the other side.

i

Line Going Through 2 Points

Points belong to line:

X| = (Ulyvl) au1 +bvy +c = 0
aus +bveo +c = 0
n = (a,b)
] = (CL, b, C) subject to:
a*+bv° = 1

m
v
"N
r

m

v
"N
r

X3

Line Going Through N Points

= (ug, v;)

In practice, this never happens due to noise.

In Real Life

400.000

300.000 oy .

o ®e %% « Price of a house a function of its
o® 7 Size

100.000 .

500 1000 1500 2000 2500
https://www.internalpointers.com/post/linear-regression-one-variable

o ©_la
By @/ _“1% (b)
é ° o ¢ e o0 - A § n s
wn o v -3
g 9. ¢ ‘9%"%:3 T 0%,:“% ?.Q& g o
.8 - “oo °°o & onﬁoﬁ E, <
59| 4 ° & = o . . .y
IF e N : Proportion of negative and positive
-] 4 Z 8-
¢ 8- : emotions in anglophone fiction.
E Y
o) ‘i o
0 a
| | I I 1 1 | I I I 1 1
1900 1820 1940 1960 1980 2000 1900 1920 1940 1960 1980 2000
Year Year

Moretti & Sobchuk, 2019
=Pr-L

Fitting a Line to N Points

Orthogonal distance to line:
hi :aui—l—bvi+cifa2—|—b2 =3

— We want to minimize Y . (au; + bv; + ¢)* w.r.t. a, b, and c,

subject to a? + b% = 1.

-

Mnm
:U
i
r

Centering the Coordinates
Original points:

X- = (U, v; .
X; = (U/i,vi) (l)1<l<n

o :Z

o
Centered pomts:
® c —
® X =X, —X
_c — ()

—> The points can always be translated so that their center of

gravity is at the origin.
EPFL 8

Minimization using Centered Points

Minimize >_.(au; + bv; + ¢)? w.r.t. a, b, and ¢, subject to a* + b* = 1.

Minimize >_.(au; 4+ bv;)? 4+ 2¢(ad_, U%Zz ;) +><2.

Zero if coordinates are centered. c=0

upr U1
Minimize |[M [Z] |2 subject to a +b* = 1, with M = t2 2
| Up Un

— [] is the eigenvector associated to the smallest eigenvalue of M M.

a
b
PrL A

m

Optional: Proof Sketch

Let us consider the symmetric matrix A = MTM of size N x N:

« We can write A = R DR where D is diagonal and R’ R = I, therefore
vXeRY, |IAX|?=XTATAX =X"MX=RX)'D(RX).

« R is a rotation matrix and
VX € RY,|IRX]|| = |IX].

« LetXeRY, ||X|| =1and Y = RX, we have
IAX||? = YT DY with ||Y]|| = 1.

* D 1s a diagonal matrix, therefore we have

40 0
D = 0 .. 0 ,
000 ay

= 4 < IDY|| < Ayif Yl = 1.

This result applies in any dimension.

m
1
"N
r

Optional: Fitting Ellipses
For each point :
d (x,,X) =au” +buy, +cv’ +du,+ev, + f
=[u,.2 uy, v,© u, v, 1]°X

Minimize :

¥ d, (x,,X)* =||AX| subject to |X] = 1

where A =

The line and ellipse fitting algorithms we showed
are examples of an important technique known

as the Direct Linear Transform. !

=Pr-L

Optional: Generalization

Line: Ellipse :
Xi = |U,) X; = |Us 0]
w = [a)] w = [a,bcde,f]
o(x) = |u,v,]1] H(x) = [u2 wv, v, u, v, 1]
t; = 0 t; =
In both case we minimize: (Feature Vector

WTgb (%) — ¢)

Zda(xia X :

— \V/i,WT¢(Xi) ~ U;

)

—— We will encounter this formulation again later in the class. ﬁ
=rn

Back to 2D Lines

_ : -
Yu® Yuy,

- 2
2 Uy, Evi

Moment Matrix

e The eigenvector corresponding to the largest eigenvalue of MTM is the
direction of the fitted line.
e The eigenvector corresponding to the smallest eigenvalue is its normal.
e The ratio of the two eigenvalues indicates how much noise there is:
e zero without noise,
e close to one if the points are randomly distributed. !

=Pr-L

Binary Classification

= [®)

0.8 -

0.6 -

0.4 -

0.2

-0.2

0.4

-0.6 -

-0.8

4 05 X? 0.5 " Decision boundary

Two classes shown as different colors:

e Thelabelye {-1,1} ory e {0,1}.

e The samples with label 1 are called positive samples.

e The samples with label -1 or 0 are called negative samples.

=Pr-L A

Signhed Distance Reformulated

h=0: Point is on the line.
A ‘. X = [1,x;, x,] h>0: Point in the normal’s direction.
h<O0: Point in the other direction.

n = [wy;,w,]

W = [wy, wy, w,] With W12 + w22 =1

>

Notation: X =[x}, X,]

X = [1,X1,X2]

Signed distance: h = wy+ wix; + wox,

=W-X ﬂ

Mnm
:U
i
r

Problem Statement in 2D

i W = [wy, wy, wel ’
0.8 -
06 7 [xl’XZ’ xO]
0.4 -
0.2 - o

X ol
-0.2 ©
0.4 F ©
0.6 - o ® © %
-0.8
o O
1 | S - !) -
p 05 E 05 " Decision boundary

Find w such that:
 For all or most positive samples w - X > 0.

* For all or most negative samples w - X < 0.

Signed Distance in 3D

[W()a Wi, W, W3]

\ { S* ‘ ,.‘
b

avtn q

P
Q ’ *
9% %@. »%M.oﬁ_e

odte
A ﬁ. wh
At

e

.
(o P

ax+by+cz+d

x € R3,0

2 -
W2+w3_1.

~/

Signed distance A

Signed Distance in N Dimensions

h=0: Point is on the decision boundary.
h>0: Point on one side.
h<0: Point on the other side.

QX =1[1lx,...,xy]
p 1 N

w=[w,...,w,]

N
W = [wy, wy, ..., w,] With szz =1

> i=1

Notation: X =[x}, ..., x,]
X=[1lx....x,]

~ ~

Hyperplane: xeR", 0=w-X
= Wy + WXy + .. WX,

Signed distance: h=w-X A
PrL

m

m

Problem Statement in N Dimensions

Hyperplane: x € RN, W . % =0, withx =[1]x].

Signed distance: w - X, with w = [w,|w] and | |W || = 1.

Find w such that
o for all or most positive samples w - X > 0,

» for all or most negative samples w - X < 0.

Perceptron

X
X
X X 29 x %
X X X x
X X X
X X X
X X x
» x X XX X 1
X x % X Xx o X
X e &
¥ XX %
% X
X' X x X x., X7x 0
x xx =X X X x XX
x x X xX
)(xx X XX
x X X X -1
X X
X X
X X %
x X X
X xx
X X X 2
X
T T T T T T _3 T T T T
-3 -2 -1 0 1 2 -3 -2 -1 0 1

N
Minimize: F(w) = — Z sign(w - X,)ty
n=1

o Set wq to 0.

e Iteratively, pick a random index n.

— If x,, is correctly classified, do nothing.

— Otherwise, Wt‘l‘l — ‘X/'t -+ tnin

Test Time

sow) — [L wex>0,
Y5 - —1 otherwise.

x = [L,x1,.., Ty

=Pr-L

Centered Perceptron

If the two populations are of the same size,
the decision boundary can be assumed to go
through the center of gravity.

Given a training set {(X,,)| <,<y} minimize:

E(w)=— Z sign(w - Xy,)ty

m
"N

e Center the x,,s so that wg = 0.
o Set wy to 0.

e Iteratively, pick a random index n.

— If x,, is correctly classified, do nothing.

— Otherwise, w11 = Wy + t,X,. g

Convergence Theorem

v is the margin

If there exists a number v > 0 and a parameter vector w,* with ||w| = 1, such
that
n t,(Xnp W) >,

then the perceptron algorithm makes|at most 5—22 errors) where R = maz,||X,||.

-

m
v
"N
r

What if v is Small?

for n in range(nIt): for n in range(nIt):

for i in range(ns): inds=list(range(ns))
e If x,, is correctly classified, do nothing. ra nd Om " Sh UffIE(I nd S)
e Otherwise, wy 1 = Wy + t,X,,. for i in range(inds):

e If x,, is correctly classified, do nothing.

Randomizing helps!
e Otherwise, w11 = Wy + 1, X,,.

PFL A

m

What if y Does Not Exist?

3 3

20% of outliers

30% of outliers

Still works up to a point but no guarantee!

Optional: Ancient History

The perceptron is a simple algorithm, but imagine
coding it on this IBM 704, which Frank Rosenblatt
used to implement it in 1957.

L gy - S
; o S

There was much initial enthusiasm. But, it was later
realized there were serious limitations, such as the
linear separability requirement.

L A

Optional: Dedicated Hardware (1960)

Imagine coding on that!

=Pr-L

Optional: Python Implementation (1)

def perceptronRand(xs,ys,nlt=200,randP=True):

N, D = xs.shape # Get data shape.
w = np.zeros(D) # Init weights.
for it in range(nlt): # Train.

allCorrect = True # Generate indices.

inds = np.random.permutation(N) if randP else np.arange(N)

for 1 in inds:

x = xs[i] # Pick one sample. Call to numpy. Mostly
y = 2*(np.inner(x,w) > 0)-1 # Predict the label. coded in C or Fortran.
ify I=ys][i]: # Misclassified.
w +=ys[i] * x # Update weights.
w /=np.linalg.norm(w) # Normalize length.
allCorrect = False # Something has changed.
print('It {}: {}".format(it + 1,linearAccuracy(xs, ys, w)))
if allCorrect:
break

Finish training.
return w

def linearAccuracy(xs,ys,ws):

L return(sum(ys == (2 * (xs @ ws >0)) - 1) * 100/len(ys)) A

m
v
"N

Optional: Python Implementation (2)

def perceptronRand(xs,ys,nlt=200,randP=True):

N, D = xs.shape # Get data shape.
w = np.zeros(D) # Init weights.
bestW = None
bestA = 0.0
for it in range(nlt): # Train.

allCorrect = True # Generate indices.

inds = np.random.permutation(N) if randP else np.arange(N)

for i in inds: Record best solution.
X = xs][1] # Pick one sample.
y = 2*(np.inner(x,w) > 0)-1 # Predict the label.
ify I=ys[i]: # Misclassified.
w +=ys[i] * x # Update weights.
w /=np.linalg.norm(w) # Normalize length.
allCorrect = False # Something has changed.
acc = linearAccuracy(xs, ys, W)
if(acc>bestA):
bestW =w
bestA = acc
print('It {}: {}'.format(it + 1,bestA))
if allCorrect:

break # Finish training.
| — L return bestW

Optional: JAVA Implementation

import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4;j;
import java.lang.Float;

class Perceptron {
public Perceptron() {}

public static INDArray perceptronRand(INDArray xs, INDArray ys, int nlt, boolean randP){ public static String linearAccuracy(INDArray xs,INDArray ys,INDArray w){
long[] shape = xs.shape(); /I Get data shape INDArray y = (xs.mmul(w).gt(0)).mul(2).sub(1);
long N = shape[0]; return Nd4j.sum((y.eq(ys))).div(4).toString();
longD = shape[1]; }
INDArray w = Nd4j.zeros(D,1); // Init weights public class Main{

public static void main (String[] args)¥{
for (int it = O; it < nlt; it++){

boolean allCorrect = true; INDArray xs = Nd4j.create(new float[][1{{1,0},{0,1},{1,1},{0,0}});
INDArray inds = Nd4j.arange(0,D); /I Generate samples indices. INDArray ys = Nd4j.create(new float[][Il{{1}.{1}.{1}.{-1}});
int nlt =200;

if (randP) boolean randP = true;

Nd4j.shuffle(inds); INDArray weights = Perceptron.perceptronRand(xs, ys, nlt, randP);

}

for (inti=0;i<N;i++){ }

INDArray x = xs.getRow(i); /I Pick one sample.

INDArray y = (x.mmul(w).gt(0)).mul(2).sub(1) ; /I Predict the label.

if (y.data().asFloat()[0] != ys.getRow(i).data().asFloat()[0]){ // Misclassified.

w = x.mul(ys.getRow(i)).add(w.transpose()); /I Update weights.
w = w.div(w.norm2().add(1e-3)).transpose(); /I Unit normal length.

allCorrect = false;

}
}

System.out.printin("It " + it + ": " + linearAccuracy(xs, ys, w));
if (allCorrect){
break;
}
}

return w;

-

More verbose!

Mnm
:U
i
r

NumPy/SciPy

The time-critical loops are usually implemented in C, C++ or
Fortran. Parts of SciPy are thin layers of code on top of the
scientific routines that are freely available at http://
www.netlib.org/. Netlib is a huge repository of incredibly valuable
and robust scientific algorithms written in C and Fortran.

One of the design goals of NumPy was to make it buildable
without a Fortran compiler, and if you don’t have LAPACK available
NumPy will use its own implementation. SciPy requires a Fortran
compiler to be built, and heavily depends on wrapped Fortran
code.

https://www.scipy.org/scipylib/fag.html A

m
v
"N
r

M

Optional: Pacman Apprenticeship

e Examples are state s.
e Correct actions are those taken by experts.
e Feature vectors defined over pairs ¢(a,s).

* Score of a pair taken to be w - ¢(a,s).
e Adjust w so that

Va,w - ¢(a™,s) > w- ¢(a,s)

when a* is the correct action for state s.
http://ai.berkeley.edu/project overview.html

"N
r

m

The Problem with the Perceptron

E(W)=—) si

Two different solutions among
infinitely many.

The perceptron has no way to
favor one over the other.

The culprit

[

en(w - Xy,)ty

- g

The Problem with the Perceptron

' This is bad!

Position of x

Decision boundary

e There is no difference between close and far from the decision
boundary.

e We want the positive and negative examples to be as far as
possible from it.

=Pr-L A

From Perceptron to Logistic Regression

c(X-wW)
Replace the step function (black)
>
. by a smoother one (red).
Position of x

Decision boundary

e Replace the step function by a smooth function o.
e The prediction becomes y(x; W) = o(W - X).

e Given the training set {(x,,tn)1<n<n} Where t,, € {0,1}, minimize the
cross-entropy

~y

E(w) == {talny, + (1 —t,) In(1 — yy)}

Yn = y(xn; GJV) __)
This is a convex function of w!
“P=L with respect to w. @

m

P

e
0

Sigmoid Function

o(a)

— o(a) ‘ 1.0
. 1
0.8 O—(a) _
0.6 1 + exp(—a)
Oo

0. — — (1 =
5, — o1 —0)

0.2

e It is infinitely differentiable.
e Its derivatives are easy to compute.
o It is asymptotically equal to zero or one.

L

—> Can be understood as a smoothed step functionA

Cross Entropy

E(‘X’) — Z{tn In YUn + (1 _ tn) ln(l o yn)}

VE({;V) — Z(yn — tn)in

n

Yn = 0(W - Xp)

e —(t,Iny, + (1 —¢)In(1 —y,)) is close to 0 if z, =1 andy, is
close to 1 or if £, = 0 and y, is close to zero. Minimizing E(w)
encourages that.

e —(t,Iny, + (1 —¢)In(1 —y,)) is larger if 7, =1 andy, < 0.5 or
t, = 0and y, > 0.5. Minimizing E(w) discourages that.

* E(w) 1s a convex function whose gradient is easy to compute.

—> The global optimum can be found very effectively.

o

m
v
"N
r

Probabilistic Interpretation

y(X; W) = 6(W - X)
B 1
1+ exp(—w - X)

) <yx;w) <1
*y(x;w) = 0.51f w-X =0, 1.e. X is on the decision boundary.
* y(x; W) = 0.0 or 1.0 1if x far from the decision boundary.

= y(X; W) can be interpreted as the probability that x belongs to one
class or the other.

Logistic regression finds what 1s called the maximum likelihood
solution under the assumption that the noise 1s Gaussian.

Bishop, Chapter 4.3.2. A

m
v
"N
r

Example

200

Female
Male

Weight (1bs.)

150

100

30 o 60 65 70 S 8

Height (in.)

e The algorithm does the best it can.
cpr e Some samples can be misclassified.

o

Kaggle Survey (2019)

90%
80%
70%
oo Logistic regression is and is likely to
remain the most used technique for the
50%
foreseeable future.
40%
30%
20%
10% I
.) .
Linear or Decision Gradient Convo- Bayeian Oo se Recurrent Transformer Ge ea Evolution Other
Iﬁeg etss on R;ee;o?r: Sl?'mg lrxlt::fr:lll :poaches Notwo ks Notw‘:ak Hetwarks esa nal pz:::':tos
Forests chines Networks Networks

What data science methods do you use at work?
=Pr-L

Outliers Can Cause Problems

e Logistic regression tries to minimize
the error-rate at training time.

e Can result in poor classification
rates at test time.

® o
i o 0 —> We will talk about ways to prevent
S AAREA this in the next lecture.
e F:) AsAA
&} ® A AA
A

EPFL A

From Binary to Multi-Class

e k classes.

o Simply using k (k-1)/2 binary classifiers results in
ambiguities.

PrL Bishop, Chapter 4.1.2

m
"N

Linear Discriminant

Decision region

Decision boundary

Given K linear classifiers of the form y,(x) = w, - X:
« Decision boundaries y,(X) = y(X) © (W, — W) - X = 0.
» These boundaries define decision regions.

« Decision regions are convex:
(Wk—Wl)-f(A > O
(W= W) - Xp >0
=> V1€ [0,1], if x = Ax,+(1 — A)Xp, then
In other words, if two points are on the same side of a decision boundary
so are all point between them.

o

Multi-Class Linear Classification

« K linear classifiers of the form yk(X) =W, -X= W,{X.

« Assign x to class k if y*(x) > y/(x)VI # k.

—> This still 1s a linear
classification problem but 1n a

k = arg max w, X space of dimension K times the
’ dimension of the original one, 6
L - in this example.
Y1 wi P
— X
yx | | Wi

Vector of dimension K times the dimension of w.
k = arg max y;
J

m

Multi-Class Logistic Regression

Y1

YK

arg maxy;
J

« K linear classifiers of the form yk(x) = G(WIZX).

« Assign x to class k if y*(x) > y/(x)VI # k.

« Because the sigmoid function
1S monotonic, the formulation
1s almost unchanged.

 Only the objective function
being minimized need to be
reformulated.

Bishop, Chapter 4.3.4 A

Multi-Class Cross Entropy

Let the training set be {(X,, [£,, .., IX]); <<y} Where t* € {0,1} is the
probability that sample x, belongs to class k.

Activation: a‘(x) = o (W;{X)
. exp(a“(x))
Probability that x belongs to class k: yk(X) = -
g : 2., exp(ai(x))
Multi-class entropy: EW,,...,Wg) = — Z Z * In(y*(x))
n k
Gradient of the entropy: VE = Z Ox,) — t9x

 This 1s a natural extension of the binary case.
» The multi-class entropy i1s still convex and its gradient is easy to

compute.
=Pr-L Bishop, Chapter 4.3.4 A

Multi-Class Results

Multiclass logistic regression is a very natural extension of binary
logistic regression and has many of the same properties.

=Pr-L A

