Wulfram Gerstner
EPFL, Lausanne, Switzerland

TAs In 2020:
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COURSE WEBPAGE:

Moodle

Week 1: A first simple neuron model/
neurons and mathematics
Week 2: Hodgkin-Huxley models and
biophysical modeling
Week 3: Two-dimensional models and
phase plane analysis
Week 4: Two-dimensional models,
type | and type Il models
Week 5,6: Associative Memory,
Hebb rule, Hopfield
Week 7-10: Networks, cognition, learning
Week 11,12: Noise models, noisy neurons
and coding
Week 13: Estimating neuron models for
coding and decoding: GLM
Week x: Online video: Dendrites/Biophysics
Week xx: Density equations



LEARNING OUTCOMES

*Solve linear one-dimensional differential equations
*Analyze two-dimensional models in the phase plane
*Develop a simplified model by separation of time scales
*Analyze connected networks in the mean-field limit
Formulate stochastic models of biological phenomena
*Formalize biological facts into mathematical models
*Prove stabllity and convergence

*Apply model concepts In simulations

*Predict outcome of dynamics

_|Look at samples of
past exams

Use a textbook,

*Describe neuronal phenomena

Transversal skills

Plan and carry out activities in a way which makes
optimal use of available time and other resources.
Collect data.

*\Write a scientific or technical report. _

(Use video lectures)
don’t use slides (only)

-



Written Exam (70%o)
+ miniproject (30%)

Textbook:

Miniproject consists of

3 extended computer exercises,
of which you have to hand in 2
(first one Is easler, recommended)

Neuronal
: & 1
* e Dynamlcsl

http://neuronaldynamics.epfl.ch/ g

Video:

https://Icnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC1.html

https://Icnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC2.html



https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC1.html
https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC2.html

Welcome back to EPFL!!

Today: Course iIn BS 170

BS 170 for the first week, but
INM 200 for the rest of the semester



1.1 Neurons and Synapses:

Week 1 - neurons and mathematics: Overview
a first simple neuron model 1.2 The Passive Membrane
- Linear circuit
Wulfram Gerstner - Dirac delta-function
EPFL, Lausanne, Switzerland 1.3 Leaky Integrate-and-Fire Model
. 1.4 Generalized Integrate-and-Fire
Reading for week 1: Model

NEURONAL DYNAMICS Bemese®t 15 quality of Integrate-and-Fire
- Ch. 1 (without 1.3.6 and 1.4) Vil Models

Cambridge Univ. Press =



~

——> 1.1 Neurons and Synapses:
Overview

?.2 The Passive Membrane

- Linear circuit
- Dirac delta-function

1.3 Leaky Integrate-and-Fire Model

1.4 Generalized Integrate-and-Fire
Model

1.5. Quality of Integrate-and-Fire
Models

/




Neuronal Dynamics - 1.1. Neurons and Synapses/0verview

motor

cortex
How do we recognize things? : frontal
Models of cognition visual cortex
Weeks 5-10 cortex

{0 motor
output



Neuronal Dynamics - 1.1. Neurons and Synapses/0verview
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Neuronal Dynamics - 1.1. Neurons and Synapses/0verview

— Signal:
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Neuronal Dynamics - 1.1. Neurons and Synapses/0verview

Hodgkin-Huxley type models: Signal.
Biophysics, molecules, ions action potential (spike)
(week 2) ) f“

dendrites
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Neuronal Dynamics - 1.1. Neurons and Synapses/0verview
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Neuronal Dynamics - 1.1. Neurons and Synapses/0verview

Integrate-and-fire models:
Formal/phenomenological
(week 1 and week 7-9)

Spike emission

| synapse T\”“
-Spikes are events

-triggered at threshold Postsynaptic
-spike/reset/refractoriness potential



Noise and variability in integrate-and-fire models

» Spike emission

Output
-Spikes are rare events
-triggered at threshold

RRLRIRERLRARIRE

Subthreshold regime: Random spike arrival
-trajectory of potential shows fluctuations



Neuronal Dynamics — membrane potential fluctuations

Spontaneous activity in vivo

. . electrode
What I1s noise?
What iIs the neural code?

Brain
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Milan Vojnovic (PhD 2003 with J-Y Le Boudec)
I [ [ [
N

A cortical neuron sends out signals
which are called:

[ ] action potentials

[ ] spikes

[ ] postsynaptic potential

The dendrite Is a part of the neuron
| ] where synapses are located
[ ] which collects signals from other
neurons
[ ] along which spikes are sent to other
neurons

In an integrate-and-fire model, when the
voltage hits the threshold:
[ ] the neuron fires a spike
| | the neuron can enter a state of
refractoriness
| | the voltage Is reset
| ] the neuron explodes

In vivo, a typical cortical neuron exhibits
| | rare output spikes
| ] regular firing activity
| ] a fluctuating membrane potential

Multiple answers possible!



Wulfram Gerstner
EPFL, Lausanne, Switzerland

Week 1: A first simple neuron model/
neurons and mathematics
Week 2: Hodgkin-Huxley models and
biophysical modeling
Week 3: Two-dimensional models and
phase plane analysis
Week 4: Two-dimensional models,
type | and type Il models
Week 5,6: Associative Memory,
Hebb rule, Hopfield
Week 7-10: Networks, cognition, learning
Week 11,12: Noise models, noisy neurons
and coding
Week 13: Estimating neuron models for
coding and decoding: GLM
Week x: Online video: Dendrites/Biophysics



Biological modeling of Neural Networks

Course: Monday : 9:15-13:00

A typical Monday:
1st lecture 9:15-9:50

have your laptop
with you

1st exercise 9:50-10:00

paper and pencil

2nd lecture 10:15-10:35

2nd exercise 10:35-11:00 paper and pencill

3rd Igc;ure 11:_15 11%1;34(1)2-40 — paper and pencil
"0 EXEICISE 1.0 Le. OR Interactive toy

Course of 4 credits = 6 hours of work per week | examples
4 ‘contact’ + 2 homework  |gn computer

moodle.epfl.ch



Week 1 - part 2: The Passive Membrane

B H
R \J 1.1 Neurons and Synapses:
- - - Overview
Biological Modeling of 1.2 The Passive Membrane
Neural Networks - Linear circuit
- Dirac delta-function
1.3 Leaky Integrate-and-Fire Model

Week 1 - neurons and mathematics: 1.4 Generalized Integrate-and-Fire

a first simple neuron model Model

9. ' rate-and-Fir
Wulam Garstner 1.5. Quality of Integrate-and-Fire
Models

EPFL, Lausanne, Switzerland



Neuronal Dynamics -1.2. The passive membrane
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Neuronal Dynamics -1.2. The passive membrane

Spi ke re j%bn
(D T |

Subthreshold regime
- linear
- passive membrane
- RC circult







Neuronal Dynamics - 1.2. The passive membrane
\\ I /() Time-dependent input
/ .
|

____
.

Math development:
T | Derive equation

- (Blackboard)




Passive Membrane Model




Pﬁsive Membrane Model

-

\

d
-—UuU=—(U—U + RI (1
4 dt ( rest ) (t)

T'%V :—V+R|(t)1 V :(u_urest)
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Math Development:

Voltage rescaling
(blackboard)

/




Passive Membrane Model

d
- Uu=—(Uu—u + R (t
(4 dt ( rest) ()
d
z-—V =—-V + RI (1); V=Uu-—-u_)

dt



Passive Membrane Model/Linear differential equation

T - de—V—I—R t);
dt

P Free solution:
) exponential decay




Neuronal Dynamics - Exercises NOW

Start Exerc. at 9:47.
Next lecture at

10:15

Step current input:

Pulse current input:

.

s RI (1) E
T dt ( rest)
d

arpitrary current input:

Calculate the voltage,
for the
3 Input currents



Exercise 1: Passive Membrane

The voltage across a passive membrane can be described by the equation

Tf;: = —(u — trest) + RI(2). (1)

1.1 Step current

Consider a current I(t) = 0 for t < ty and [(t) = I for £ > #;. Calculate the voltage u(t), given
that the neuron is at rest at time #;. (Hint: Instead of solving the differential equation explicitly,
try to construct the response to the step current along the lines: What is the value of u(t) for
t < tg? What is the asymptotic value of u(t) for ¢t > t,7 What is the functional form and time
scale of the transition?)

1.2 Pulse current
Consider a current pulse

o fort <tgand i > i+ A
I{ﬂ_{ q/A fort>=ilgand i <t + A, (2)

where A is a short time and ¢ is the total clectrical charge.

Consider first A = 0.17, and then A = 0.057, A = 0.0257. Sketch the input current pulse and the
voltage response. What happens in the limit A — 0?7 (Hint: Usce ™ =1 —x for 2 < 1.)

1.3 Delta function

The Dirac delta function can be defined by the limit of a short pulse:

1/A fortg <t <tg+ A
0 otherwise .

3t —to) = Jim fa(t) where fa(t) = { (3)

Convince yourself that the integral _]'12 d(t — tp)dt is equal to one if {; < ty < l» and vanishes
otherwise.

Express I(t) in Eq. 1 using the d-function for the case that an extremely short current pulse arrives
at time t/. Pay attention to the units!

1.4 General solution

Assuming that before a given time #; the current is null and the membrane potential is at rest,
derive the general solution to Eq. (1) for arbitrary I(t).

The voltage across a passive membrane can be described by the equation

du
TE = —(!L — “rrest) + RI(t) . (1)

1.1 Step current

Consider a current I(t) = 0 for t < tp and I(t) = Iy for t > ty. Calculate the voltage u(t), given
that the neuron is at rest at time #3. (Hint: Instead of solving the differential equation explicitly,
try to construct the response to the step current along the lines: What is the value of wu(t) for
t < tp? What is the asymptotic value of u(t) for t > t,7 What is the functional form and time
scale of the transition?)

1.2 Pulse current

Consider a current pulse

|0 fort <tgand t >ty + A
It) = g/A fort>tgandt <tyg+ A, (2)

where A is a short time and ¢ is the total electrical charge.

Consider first A = 0.17, and then A = 0.057, A = 0.0257. Sketch the input current pulse and the
voltage response. What happens in the limit A — 0?7 (Hint: Use e * =1 — 2 for z < 1.)

1.3 Delta function

The Dirac delta function can be defined by the limit of a short pulse:

1/A for to <t <tg+ A
0 otherwise .

(3)

o(t —to) = iiglufﬂ.(f») where  fa(t) =

. . : ty o : i :
Convince yourself that the integral ftj d(t — to) dt is equal to one if t; < ty < to and vanishes
otherwise.

Express I(t) in Eq. 1 using the J-function for the case that an extremely short current pulse arrives
at time /. Pav attention to the units!






| - Step current Input:
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Lmear equation

impulse reception:
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Triangle: neuron — electricity - math
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Pulse Input — charge — delta-function
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Dirac delta-function
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Neuronal Dynamics — Solution of Ex. 1-arbitrary input

"
-—U=—(U-U_,)+RI(t
4 it ( est) (t)

Arpitrary input

Uu(t) = U, + I % o~ (t=t)/r) (t')dt’

Single pulse

Au(t) =g 0"
C

you need to know the solutions
of linear differential equations!



Passive membrane, linear differential equation

— i _________ | r-iu——(u—u )+ RI(t)
L l dt o rest

N 2N /




Passive membrane, linear differential equation

It you have difficulties, i %
watch lecture 1.2detour. ' *

/ ‘l i _________ T\ (—)/ \
— d
1S T 7o —U=—(U=Ug)+RI(t)
Three prerequisIts: T | dt
- ’ = ) U y

-Analysis 1-3
-Probabllity/Statistics
-Differential Equations or Physics 1-3 or Electrical Circuits

https://Icnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC1.html



https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC1.html

LEARNING OUTCOMES

*Solve linear one-dimensional differential equations
*Analyze two-dimensional models in the phase plane
*Develop a simplified model by separation of time scales
*Analyze connected networks in the mean-field limit
Formulate stochastic models of biological phenomena
*Formalize biological facts into mathematical models
*Prove stabllity and convergence

*Apply model concepts In simulations

*Predict outcome of dynamics

_|Look at samples of
past exams

Use a textbook,

*Describe neuronal phenomena

Transversal skills

Plan and carry out activities in a way which makes
optimal use of available time and other resources.
Collect data.

*\Write a scientific or technical report. _

(Use video lectures)
don’t use slides (only)

-



Written Exam (70%) Miniproject consists of
+ miniproject (30%) 3 extended computer exercises,

of which you have to hand In 2

Textbook: Neuronal

: & 1
* e Dynamlcsl

http://neuronaldynamics.epfl.ch/ g

Video:

https://Icnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC1.html
https://Icnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC2.html



https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC1.html
https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC2.html

Questions?

This Is not a course on

Deep learning or Artificial neural networks
- Deep Learning, master EE, (Fleuret)

- Artificial NN, master CS, (Gerstner)



Summary of Section 1.1 and 1.2.

Neurons emit spikes (action potentials) which are short
standardized events In the form of voltage pulses.

Spikes are emitted at the firing threshold.

Below the threshold the electrical behavior is often well
characterized by a linear differential equation (math)
corresponding to an RC circult (electricity) or to a passive
membrane (biology). We will often In this class walk along
the triangle that connects math with electricity and biology.
This class has a strong focus on mathematical modeling of
the biological phenomena. Differential equations, Dirac-delta
pulses, and their link to biology are important concepts.
The time constant of an RC circult is t=RC.



Week 1 — part 3: Leaky Integrate-and-Fire Model

(il \ 1.1 Neurons and Synapses:
EEEEEEEEEEEEEEEEE Overview
_ - - \ 1.2 The Passive Membrane
Biological Modeling of Linear circu
Neural Networks - Dirac delta-function

- Detour: solution of 1-dim linear
differential equation

Week 1 - neurons and mathematics: 1.3 Leaky Integrate-and-Fire Model
a first simple neuron model 1.4 Generalized Integrate-and-Fire
Model

Wuliram Gerstner 1.5. Quality of Integrate-and-Fire
EPFL, Lausanne, Switzerland Models



Neuronal Dynamics - 1.3 Leaky Iintegrate-and-Fire Model

"

r-—Uu=—(Uu-u

at

)+ RI(t)

rest




Neuronal Dynamics - Integrate-and-Fire type NModels
Spike emission

|
Rl b%

Input spike causes an EPSP

Simple = excitatory postsynaptic potential
Integate-and-Fire Model:

passive membrane -output spikes are events
+ threshold -generated at threshold

Lleaky Integrate-and-Fire Model -after spike: reset/refractoriness



Neuronal Dynamics - 1.3 Leaky Integrate-and-Fire Model

.
j Spike emission
S e @ e o 9
\,f reset
0 ] "
— R
4 d A
v u =—(U—Uyy) + RI(t) linear
. U (t) =9 = Flre+reset u —> U, threshold/




Neuronal Dynamics - 1.3 Leaky Integrate-and-Fire Model

/() Time-dependent input
a4 i :
- |
I N
U
---------------------- —;
Math development:
/1Y)
. Response to step current

-Spikes are events
-triggered at threshold
-spike/reset/refractoriness

- -




Week1-0Quiz 2. Take 90 seconds:

R e T T

Consider the linear differential equation # 5 * =" "%
with initial condition att=0: x =0

The solution for t>0 Is

(i) X(t) = x_exp(t/r)

(i) X(t) =X, exp(-t/7)

(ii1) x(t) = x.[1—exp(-t/7)]
(Iv) x(t) = 0.5x_[1+exp(—t/7)]

You will have to use the
results: response to
constant input/step input
again and again




Neuronal Dynamics - 1.3 Leaky Integrate-and-Fire Model
\\Z/ () CONSTANT input/step input
/ .
|

U

— -







Leaky Integrate-and-Fire Model (LIF)
d LIF

T'EUZ—(U—Urest)JFRlo f u(t)=9= U-U,

‘Firing’

Repetitive, current Io

1/T | frequency-current

relatl
MG

| L




Neuronal Dynamics - First week, Exercise 2

d
.—U=—(u-u..)+RI(t
T dt ( reSt) ()

frequency-current
1/T1  relation

me

| L




EXERCGISE 2 NOW: | caky Integrate-and-fire Model (LIF)

_____________________________________________________

Exercise!
Calculate the
Interspike interval T

for constant input I.
Firing rate 1s f=1/T.
Write f as a function of I.
What Is the
frequency-current curve

f=g(l) of the LIF?

assume: u_=u

rest

repetitive

Start Exerc. at 10:53.
Next lecture at
11:15




Exercise 2: Integrate-and-fire model

Consider the model of Eq. (1) with a threshold at 1 = ¥ > t;esi. If the membrane potential reaches
the threshold, the neuron is said to fire and the membrane potential is reset to u,.s. The injected
current is a step of magnitude [j:
0 t<t
w-{ o 5o

lo t>1p
2.1 What is the minimal current to reach the threshold, assuming wu(t = 0) = test?

2.2 At what time will the voltage first reach the threshold?

2.3 Calculate the firing frequency f as a function of Ij.

The function g(/Iy) which gives the firing frequency as a function of the constant applied current is
called gain function.



Summary of Section 1.3.
The leaky Iintegrate-and-fire neuron model Is the combination of a

passive membrane (linear differential equation) with a threshold.
The moment when the potential hits the threshold defines the firing
time of a spike. Immediately after firing the voltage Is reset to a
lower value (not necessarily to the resting potential).

For the leaky integrate-and-fire model, the gain function (frequency
of firing for constant input, as a function of input strength) can be
calculated analytically. The firing frequency decreases with
decreasing Input. If the constant input is below a critical value no
firing can occur. This value defines the rheobase current threshold.
For the leaky Integrate-and-fire model the rheobase current
threshold can be predicted from the voltage threshold and the model

parameters R and C.



Week 1 — part 4. Generalized Integrate-and-Fire Model

AU
RBEALS D LA \ 1.1 Neurons and Synapses:
- - - Overview
Biological Modeling of \l' 1.2 The Passive Membrane
Neural Networks - Linear circuit

- Dirac delta-function

\ 1.3 Leaky Integrate-and-Fire Model

Week 1 - neurons and mathematics: 1.4 Generalized Integrate-and-Fire
a first simple neuron model Model

1.5. Quality of Integrate-and-Fire
Models

Wulfram Gerstner
EPFL, Lausanne, Switzerland



Neuronal Dynamics - 1.4. Generalized Integrate-and Fire

a

Spike
emission

Integrate-and-fire model

LIF: linear + threshold



Neuronal Dynamics - 1.4. Leaky Integrate-and Fire revisited
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Neuronal Dynamics - 1.4. Nonlinear Integrate-ana Fire

LIF q

-—U=—(U-U,,)+RI(
r U= —(U=U) +RIQ)

NLIF
d

rU=F(U)+RI()

If firing:
U = Ueget



Neuronal Dynamics - 1.4. Nonlinear Integrate-ana Fire

Nonlinear d

_ “u, =0 d
Integrate-and-Fire at | 150 a - >0 .
NLIF Y
r-—u=F(U)+RI(t) = e — IR
dt g U i

fiing: u(t)=6=
U—u,



onlinear Integrate-and-fire Model

1
| Spike emission
— M G
\HJ/ reset
(1) | N
— = B
4 d B
r-—u=F(U)+RI(t) NONIinear

dt
U (t) =& = Fire+reset threshold

.




Nonlinear Integrate-and-fire Model

' d h QuadraticrI&F:
o u=F(U)+RI®) NONlinear F(u) =co(u—cy)” +¢

u(t)=39 = Fire+resetthreshold

. /







Nonlinear Integrate-and-fire Model

d =0
—U
at
o d
r-——u=F(U)+RI®)

.

u(t)=9 = Firetrese

Quadratic I&F:
F(u)=c,(u—c)” +¢,

exponential 1&F:

t

F(U) =—(U—Upg ) +Co eXp(U—F)




Nonlinear Integrate-and-fire Model

d " |1=0
—Uu
at W
] s.\.\.m.#..:“: g U
z-._tu:_(u_urest) Rl(t) lgr
- d N exponential 1&F:
7. U=F+RI®) NONiinear F(u) = (U~ Uy,)
+C, exp(u—9)
U (t) =% = Fire+reset threshold

- y




Nonlinear Integrate-and-fire Model
Where isthe firing threshold?
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Summary of Section 1.4.

Nonlinear integrate-and-fire models with a nonlinear function f(u) of the
voltage u are excellent models of spiking behavior. The exponential
Integrate-and-fire (EIF) model is linear for low voltage, but combines it
with an exponential nonlinearity for large voltages. The quadratic
Integrate-and-fire (QIF) is symmetric for low and large voltages. The
LIF has a linear function f(u) = u — u,,.s; . All generalized integrate-
and-fire models have a voltage reset after a spike. For constant input,
the zero-crossings of the function f(u) define stationary states.

We distinguish two important stimulation paradigms: (1) stimulation with
short current pulses (Dirac delta pulses) — such pulses correspond to
an Initial condition on the voltage axis; (i) stimulation with constant
current — such stimuli correspond to a vertical shift of the function f(u).
We find In both EIF and QIF that the minimal current for spike Initiation
depends on the stimulation protocol.



Week 1 - part 5: How good are Integrate-and-Fire Model?

(Pﬂ! \l 1.1 Neurons and Synapses:
EEEEEEEEEEEEEEEEE i
Biological Modeling of 1.2 The Passive Membrane
- Linear circuit
Neural Networks - Dirac delta-function

\J 1.3 Leaky Integrate-and-Fire Model

| J1.4 Generalized Integrate-and-Fire
Week 1 - neurons and mathematics: Model

a first simple neuron model - where is the firing threshold?

1.5. Quality of Integrate-and-Fire
Models

Wulfram Gerstner
EPFL, Lausanne, Switzerland

- Neuron models and experiments




Neuronal Dynamics - 1.9.How good are integrate-and-fire models?

4 N
- /

(t
Co €& ; ™
I } L rauzF(u)ml(t)
Can we compare neuron models | T —+ | £ =0 thenu— U

with experimental data? = /




Neuronal Dynamics - 1.9.How good are integrate-and-fire models?

' neurdn ™

MM

¢

What Is a good neuron model?

——+

Can we compare neuron models
with experimental data?



Neuronal Dynamics - 1.9.How good are integrate-and-fire models?

M

800 900 1000

WM

Integrate-and-fire model 800 'g(')o' - '10_00

t[ms]



Nonlinear Integrate-and-fire Model
d | =0

Can we measure
the function F(u)?

4 d - Quadratic I&F:

ro—cu=F(u)+RI) F(u) = ¢ (U—¢))? + g

exponential 1&F:

N U (t) = = Fire"'reset/ F(U) =—(U—U_. ) +Cy exp(u—9)




Neuronal Dynamics - 1.9.How good are integrate-and-fire models?

- =— fit to EIF model 4!
o dynamic |V data

F(u)=—(—-u,,)+Aexp(2)
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Badel et al., J. Neurophysiology 2008
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Neuronal Dynamics - 1.9.How good are integrate-and-fire models?

Nonlinear integrate-and-fire models
are good

Mathematical description - prediction

Computer exercises:

Python Need to add

- adaptation
- noise
- dendrites/synapses



http://neuronaldynamics.epfl.ch/

Textbook:
Lecture today: or é"f#;?n'.'?!
-Chapter 1 0 1
-Cha pte r5 T " tndocns o cagraon

Exercises today:
-Install PYTHON for Computer Exercises
-EXxercise 3, on sheet

Videos (for today: ‘week 1°):



Biological Modeling of Neural Networks —week1/Exercise 3
d ‘ =
dt

Homework!




Exercise 3: Integrate-and-fire models —LF “ﬂ
- = =EF
The general form of an integrate-and-fire model is '
du RI(t)
— = Flu) + 4 -
e (4 ;
=
where F'(u) is an appropriate function and I(¢) is the injected current. Three popular choices for %
the function F' are the following (see Fig.1); o
- u - u na
Leaky integrate-and-fire F'(u) = — rest
-
08
. @ (” _ “rust)(” _ ”Lh)
Quadratic integrate-and-fire F(u) =k » . . . . . .
T 10 -5 0 5 10 15 20
T — 1L u {mv}
o _ —(u — u + Ae =&
Exponential integrate-and-fire F'(u) = ( rest) : _
T Figure 1: Sketch of the function F'(u) for three popular integrate-and-fire
models.
3.1 Identity the resting potential u,.5; and the spike threshold ), in Fig. 1.
- ' - 3{'-
3.2 Consider three different values uq, us and ug for the voltage such that (i) u; is below tyest 1: P | )/
(the resting potential), (ii) ug is between upest and ugp, (the spike threshold), and (iii) us is above 1o :' z | 7
ugp, (see Fig. 1). For the three models described above, determine qualitatively the evolution of R u#xh ¢ DJ‘{f_{;_J_“
u(t) when started at ui, us, and ug, assuming that the external input I(t) = 0. S osf Ve b T
= 04t h"“'-.‘,l " t {ms)
,.: -'i.-':‘.--.. ry
Z . ~e_ =’ ok
e For u(t = 0) = uy, the voltage increases/decreases slowly /rapidly. ui_ | | o | os|
= g2
@ FOr (t =0) = U, +ovrreeii ittt al {,J
0.4 02+
@ For u(t =0) = Ug, «ovone i 05 ‘5 u,{fm CREETE IR R ?'?{ms} o w0
(a) (b)

3.3 Why is u.. called the resting potential? What is the role of uy,?
Figure 2: TLeft: Right-hand side of Eq. 4 for the quadratic and exponential

integrate-and-fire models if a constant input current I(t) > 0 is applied. Lower

3.4 Consider the two Vﬂltﬂg{-} traces shown in Flg' Z(b) (tﬂp) In response to a step current (b“t_ right: Trace of the injected current. Upper right: Voltage trace of the two
tom). Using the graphs in Fig. 2(a), determine which of the two models was used to generate each models (EIF and QIF).

trace.



Summary of Section 1.5.

The exponential integrate-and-fire (EIF) model Is an excellent
model of spike Initiation in neurons. | - And better than the QIF which
IS ‘too symmetric’].

The gquality of a neuron model can be measured by predicting spikes
for new Input that was used to optimize the model parameters.
Further improvements of generalized integrate-and-fire models are
possible and involve (i) noise In the spike generation process and (ii)

adaptation.



Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,
Neuronal Dynamics: from single neurons to networks and
models of cognition. Chapter 1: Introduction. Cambridge Univ. Press, 2014

Selected references to linear and nonlinear integrate-and-fire models

- Lapicque, L. (1907). Recherches quantitatives sur l'excitation electrique des nerfs traitee
comme une polarization. J. Physiol. Pathol. Gen., 9:620-635.

-Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophys. J., 5:173-194.
-Ermentrout, G. B. (1996). Type | membranes, phase resetting curves, and synchrony.
Neural Computation, 8(5):979-1001.

-Fourcaud-Trocme, N., Hansel, D., van Vreeswik, C., and Brunel, N. (2003). How spike
generation mechanisms determine the neuronal response to fluctuating input.

J. Neuroscience, 23:11628-11640.

-Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008).
Biological Cybernetics, 99(4-5):361-370.

- Latham, P. E., Richmond, B., Nelson, P., and Nirenberg, S. (2000). Intrinsic dynamics in
neuronal networks. |. Theory. J. Neurophysiology, 83:808-827.



THE END (of main lecture)

MATH DETOUR SLIDES
(for online VIDEOQ)



Week 1 - part 2: Detour/Linear differential equation

L \l 1.1 Neurons and Synapses:
R Overview

Neuronal Dynamics: 12 The Passive Membrane

Computational Neuroscience Dirac delta-function

o Siale Hetrons

differential equation

Week 1 - neurons and mathematics: 1.3 Leaky Integrate-and-Fire Model

a first simple neuron model 1.4 Generalized Integrate-and-Fire
Model

Wuliram Gerstner 1.5. Quality of Integrate-and-Fire
EPFL, Lausanne, Switzerland Models



Neuronal Dynamics - 1.2Detour - Linear Differential Eq.

"

7-—U :—(U _urest)+ R (t)

at

_ /
N
_________ N> h
i | e -y, ) +RIE)
= | at *
AN -




Neuronal Dynamics - 1.2Detour - Linear Differential Eq.

"
-—U=—(U-u_,)+RI(t
U= UU) +RIE)

Math development:
Response to step current




Neur
onalD
ynami
1GS -
1.2Detour - St
encu
rrenti
input

g
o dtu:—(u—u )
)+ RI()
(1) |

s

-
R O
_ 0,
T~ I




Neuronal Dynamics - 1.2Detour - Short puise input
"

U(t) = Upegt T RIO 1_6_(t_t0)/f: T'&“ — —(U _urest) + Rl (t)
short pulse: (t-t)) <<z utt) |
Math development: U
Response to short (t)
current pulse 1 'M=q-olt-t)
AT
i |
T 3!




Neuronal Dynamics - 1.2Detour - Short puise input
"

ut)=u_. +RI |1-e " ro U= ~(u-u_.)+RI(t)
short pulse: (t-t,) <<t utt)
Urest
(1)




Neuronal Dynamics - 1.2Detour - arbitrary input

Single pulse d
U(t)=u_ + 3 g w)s re—U=—(U-
U . e dt )+ RIE)
Multiple pulses: 0
(\G&\O‘\‘

(\56{?‘\

P01 |

82
Y S



Neuronal Dynamics - 1.2Detour - Greens function

Single pulse

AU(t) = g

—e
C
Multiple pulses:

(t-t,)/ 7

"

r-—Uu=—(Uu-u

at

[U (tO) - urest]

rest ) T

{

I

1y

1
—€
C

RI(t)

(t-t")/z I (t l)dt !




Neuronal Dynamics - 1.2Detour - arbitrary input

a
r-—Uu=—(U-U_.)+RI(
LU=—U=U)+RIE)
If you don’t feel at ease Yyet, Arbitrary input
spend 10 minutes on these ut)=u_, + j Ee—(“’)’q (t")dt'
mathematical exercises o
And quiz 2 in week 1. Single pulse
Au(t) = Jg )"

C

you need to know the solutions
of linear differential equations!



