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> This lecture
1. Inverse Reinforcement Learning
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Motivation

Motivation

So far we have manually designed reward function to define a task. Given an expert’s
behaviour, can we learn the reward function?
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Learning from Demonstrations (LfD)

e Setting: An oracle teaches an agent how to perform a given task.

e Given: Samples of an MDP agent’s behavior over time and in different
circumstances, from a supposedly optimal policy 7*, i.e.,

> A set of trajectories {£;}1 ;. & = {(st,at)}f:"’gl, at ~ 7 (s¢).
> Reward signal ¢ = R(s¢, at, S¢+1) unobserved

> Transition model T'(s,a,s’) = P(s’ | s,a) known/unknown.

e Goals:
> Recover teacher’s policy 7* directly: behavioral cloning, or imitation learning.
> Recover teacher’s latent reward function R*(s,a,s’): IRL.

» Recover teacher’s policy 7* indirectly by first recovering R*(s, a, s’):
apprenticeship learning via IRL.
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IRL Formulation 1: Small, Discrete MDPs

e Given: An incomplete MDP M = (S, A, T, R,~)
> known transition model T'(s,a,s’) = P(s' | s,a),Vs,a,s’

> unobserved but bounded reward signal, |R(s, a, s’)| < rmax, Vs, a, s’ (for
simplicity, consider state-dependent reward functions, R(s))

> known, supposedly optimal policy 7*(s), Vs € S, instead of {£;}]"_;.

e Find R : S — [—Tmax, "max] such that teacher’s policy 7* is optimal,
> furthermore: simple, and robust reward function

> Notes: in the following we fix an enumeration on the state space:
S = {51,...,s|5|}. Then R is a column vector in RISI, with R; = R(s;).
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IRL Formulation 1: Small, Discrete MDPs

e Find R € RIS! such that teacher’s policy 7* is optimal.

e Recall Bellman optimality theorem (for a known MDP):

" is optimal

< 7*(s) € argmax Q™ (s,a), VseS

a

= Q" (5,7%(s) > Q7 (s,a), Vs€S,acA (1)

e Define policy-conditioned transition matrices P* and P® € [0, 1]|S|X‘S‘:

[P*];; == P(sj | 5,7 (s4)), and [P?],; := P(s; | si,a), Vsi, 85 €S
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IRL Formulation 1: Small, Discrete MDPs

e We can represent the constraints on R as [3]:

(P*—P)(I—vP*) 'R = 0,Vac A (2)

o Proof:
» Bellman equations = Q7 (s,a) = R(s) + 'YZS/ P(s' | s,a)V™ (s'), and
V™ = (I—~vP*)"LR.
» Denote by Q™" a length-|S| column vector with elements
Q" (s) = Q™" (s,m(s)), ie., QT = R+ ~yP™V™".
> The set of |S| x |A| constraints in Eq. (1) can be written in matrix form (by
fixing an action a for all starting states s € S) as:

QF. — QI »0,Yac A < Eq. (2)
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IRL Formulation 1: Small, Discrete MDPs

e Challenges:

>
>

>
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What if noisy teacher? (i.e., a; # n*(s¢) at some t)

Instead of full 7*(s),Vs € S, only given sampled trajectories {&;}}- ,?
Computationally expensive/infeasible: |S| x |.A| constraints for each R
Reward function ambiguity: IRL is ill-posed! (R = 0 is a solution.)

From reward-shaping theory: If the MDP M with reward function R admits 7*
as an optimal policy, then M’ with affine-transformed reward function below also
admits 7* as an optimal policy: R'(s,a,s’) = aR(s,a,s’) + v (s’) — ¥(s), with
P:S—>R, a#0.
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IRL Formulation 1: Small, Discrete MDPs

e One solution (to the reward ambiguity issue): find simple, and robust R,

> e.g., use {1-norm penalty [|R]|;, and

. . . * .
> maximize sum of value-margins AV™ (s) of m* & second-best action,

AV™ (s) = Q™ (s,m*(s))— max Q" (s,a)= min [Q”* (s,7*(s)) — Q™ (s, a)]

a#m* (s) a#m*(s)

e Combining altogether:
max min P*— P (I—~P*)"*R} —)|R
max E;EA\W*(S){( C = P9 (I =P R} = AR,

st. (P*—P)(I—~P*)"'R = 0,Vac A
|R(s)] < rmax, VSE€S

with P2 the row vector of transition probabilities P(s’ | s,a),Vs’ € S, i.e., P¥, P% are
the s-th rows of P*, P%, respectively.
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IRL Formulation 2: With LFA

e For large/continuous domains, with sampled trajectories.

o Assume sg ~ Py (S); for teacher’s policy 7* to be optimal:

E Z'th(st) ™| > E Z'th(st) T
Lt=0 Lt=0

e Using LFA: R(s) = wT ¢(s), where w € R™, ||w||; <1, and ¢ : S — R™.

E Z v R(st)
t=0

e The problem becomes find w such that w ' u(7*) > w ' u(x),Vr

, Vm

=w' p(r)

| =E Z'yth¢(st)7r =w'E Z'yt¢(st)7r
J t=0 J t=0

o y(m): feature expectation of policy m — evaluated with sampled trajectories from

N T
rle oSS el
i=1 t=0

pr) =E | 7'é(s0)
t=0
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Feature Expectation Matching: Max Margin

o Let expert's feature expectation be pgp = pu(7*)

e To find a policy who's performance is close to that of the expert's, we need to find a
policy T such that ||ug — p(7)|| < e

oo oo
E nytR(st) 7| —E Z’th(st)
t=0 t=0

T = |wTu(7'r)—wTuE]

lwlig [l(7) = pEll

<
< 1l-€

e Let IT denote the set of stationary policies for an MDP. Given two policies
71,72 € II, we can construct a new policy 3 by mixing them together.

e 73 operates by flipping a coin with bias A, and with probability A picks and always
acts according to 71, and with probability 1 — X\ always acts according to .

e From linearity of expectation, clearly we have that p (m3) = Ap (71) + (1 — A)p (2).
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Feature Expectation Matching: Max Margin

Algorithm 1 Max-Margin

Initialize 7(®), compute ,u(7r(0)), i=1and t° = 0
while t(9 > ¢ do
Compute t(¥) = max,, minjeqo...(i—1)} wl (pp — p))
Solve for 7(%) with R = wT¢
Compute p(9)
Seti<+i+1
end while
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Feature Expectation Matching: Max Margin

e Similar to SVMs, we aim to find the separating hyperplane given a set of points,
where pg is given a label of 1 and {u(7()):j=0,...,(i — 1)} a label of -1:
max t
t,w
s.t. wTuE > wTu(j> +t, j=0,...,i—1
[wly <1

o When the algorithm terminates with t(n+1) < €, we have:
Yw with |lw|l, <1 3is.t. wp® >wl g —e

o Since ||lw* ||, < [Jw*||; < 1, this means that there is at least one policy from the set
returned by the algorithm, whose performance under R* is at least as good as the

expert's performance minus e.
EP
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Feature Expectation Matching: Max Margin

®u(n®)

Initialization
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Feature Expectation Matching: Max Margin

w)

H(n®)

First Iteration
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Feature Expectation Matching: Max Margin

First Iteration
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Feature Expectation Matching: Max Margin

Second lteration
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Feature Expectation Matching: Max Margin

Second lteration
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Feature Expectation Matching: Max Margin

Third Iteration
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Feature Expectation Matching: Max Margin

e We can find the point closest to g in the convex closure of u(o), A u(") by
solving the following QP:

minflup = plly stop=Y_ Ap® A >0, A =1,

e Because ug is “separated" from the points ,um by a margin of at most €, we know
that for the solution p we have ||ug — plly <e.

e Further, by “mixing" together the policies (9 according to the mixture weights \;,
we obtain a policy whose feature expectations are given by p.
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Convergence of Max-Margin Algorithm [1]

Theorem
For ¢ : S — [0, 1]¥, the algorithm terminates after at most

o (T )

iterations, where k is the number of features.

ICLGHEIN  Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 30



Example: Gridworld

e Setup:

>

>

32 x 32 grid

Non-overlapping 4 X 4 regions called macrocells

For each of the 64 macrocells, there one feature ¢;(s) indicating if state s is in

macrocell 7

R* = wT ¢ where p(w; = 0) = 0.95 and p(w; = 1) = 0.05

v =0.99

Reward

1.0

0.0

Optimal values and policy
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Example: Gridworld

0.5

0.4 1

0.3 4

[|pzt = pel|

0.2 1

0.1

0.0

=== Max-margin
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Maximum Causal Entropy IRL [5, 4]

e The underlying reward function is given by R : S x A — R.

e We consider the learner model with parametric reward function R§ :SXA—-R
where X € RY is a parameter.

e The reward function also depends on the learner’s feature representation
’
¢l Sx A—RY.

e For linear reward model, X represents the weights as RI/\J (s,a) = AT oL (s,a).

e As an example of a non-linear reward model, A could be the weights of a neural
network with ¢* (s,a) as input layer and RIA’ (s,a) as output.
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Maximum Causal Entropy IRL

e For any policy , the occupancy measure p and the total expected reward v of 7 in
the MDP M are defined as follows respectively:

P (s,a) = (L=)m(als) Yy AP{S; =s|m M}

7=0

1
Vo= — ™ (s,a) RE (s,a
=) o RT (s
s,a
Here, P{S; = s | m, M} denotes the probability of visiting the state s after T steps by

following the policy 7.

o Similarly, for any demonstration £ = {(sr,ar)},_g ;. we define

Pt (s,a) = (1—7) ZVTH {sr =s,ar =a}
7=0

Then for a collection of demonstrations = = {ét}t:1,2,.4.' we have
= 1
p=(s,a) == =i Zt P&t (s, a).
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Maximum Causal Entropy IRL

o Let & denote the learner’s final policy at the end of teaching.

e The performance of the policy 7% (w.r.t. 7F) in M can be evaluated via the
following measures (for some fixed ¢ > 0):

1. V”E — " < ¢, ensuring high reward [1, 4].

2. Dtv p“E,p”L> < ¢, ensuring that learner's behavior induced by the policy 7%

matches that of the teacher [2]. Here Dtv (p, q) is the total variation distance
between two probability measures p and q.
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Maximum Causal Entropy IRL

e Given a collection of demonstrations Z = {{:},_; 5 (where
& ={(st,r,at,7)},—¢ 1. ) the MCE-IRL algorithm returns a parametric policy:

mX(als) = exp(Qx(s,a) = Vi (s)) 3)
Wa(s) = 10gzexp (Qx (s,0))

Qx(s,a) = Rf (s,a) +'yZT(s' | s,a)Vy (s/).

s’

e The optimal parameter is obtained via solving

maximize c( Z Z log 71')\ (at,r | st,7)- (4)
A
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Maximum Causal Entropy IRL

e The above optimization problem can be solved by the gradient descent update rule

given by
AT A —ng,

where 7 denotes the learning rate, and the gradient is given by
L = ORL (s,a
o S (e ) 20

s,a

e For any given ), the corresponding policy 7T§’ can be efficiently computed via
Soft-Value-Iteration procedure (see [4, Algorithm. 9.1]).
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Maximum Causal Entropy IRL: Linear Reward

e Learner model with linear reward function Rﬁ(s,a) =T ol(s,a).
T
e Teacher with linear reward function R¥(s,a) = (wE) #L(s,a).

olet ™ =3 p7(s,0)6 (s,0), and 1= =37 pF(s,a)0" (s, a).

e The corresponding primal problem (with feature expectation matching):

7wl (als)

oo
maximize Z’YTH(GT | ao:r—1, So:7)
=0

™

subject to u - ,uE

ZWL(CL |s)=1, nl(a|s) >0,

where H is the conditional entropy.
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Maximum Causal Entropy IRL: Linear Reward

Algorithm 7 Batch MCE-IRL (Linear Reward)

Input: collection of demonstrations =
Initialization: \; and 7/
forj=1,2,... do

L -
A1 A =1 X, (”W’ - l":)
7k, | ¢ Soft-Value-Iteration (M\RE. Rf}ﬂ)
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Maximum Causal Entropy IRL: DNN Reward

e Consider a feature map ® which takes ¢ (-,-) € R? as input, and is parameterized
by the weights W € R% of a deep neural network, i.e., ® (¢L(~, 3 W) € Rz,

e Given a € R%2, denote A = (a, W) € R? with d = d + da.

e Then for the learner model with reward function RY(s,a) = a ' ® (d)L(S,a); W)
we attempt to learn «, and W jointly.
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Maximum Causal Entropy IRL: DNN Reward

Algorithm 8 Batch MCE-IRL (DNN Reward)

Input: collection of demonstrations =
Initialization: \; and 7/
forj=1,2,... do

Qg o=, {p":‘ (s,a) — p= (s, a)} P (o" (s, a); W;)
Wign W, =0 X0 {0 (5,0) = o7 (5,0) | 2550

oW |(| a;, W=W;
L ; E pL
T4 ¢ Soft-Value-Iteration (M\R .R/\I“)
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