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I This lecture
1. Inverse Reinforcement Learning
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Recommended reading

I Andrew Y. Ng, and Stuart Russel. Algorithms for Inverse Reinforcement Learning.
Proceedings of the twenty-first international conference on Machine learning.
ACM, 2000

I Abbeel, Pieter, and Andrew Y. Ng. Apprenticeship learning via inverse
reinforcement learning. Proceedings of the twenty-first international conference
on Machine learning. ACM, 2004

I Ziebart, Brian D., et al. Maximum Entropy Inverse Reinforcement Learning.
AAAI. Vol. 8. 2008.

I Osa, Takayuki, et al. An algorithmic perspective on imitation learning.
Foundations and Trends R©in Robotics 7.1-2 (2018): 1-179
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Motivation

Motivation
So far we have manually designed reward function to define a task. Given an expert’s
behaviour, can we learn the reward function?
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Learning from Demonstrations (LfD)

• Setting: An oracle teaches an agent how to perform a given task.

• Given: Samples of an MDP agent’s behavior over time and in different
circumstances, from a supposedly optimal policy π∗, i.e.,
I A set of trajectories {ξi}ni=1, ξi = {(st, at)}Hi−1

t=0 , at ∼ π∗(st).
I Reward signal rt = R(st, at, st+1) unobserved
I Transition model T (s, a, s′) = P (s′ | s, a) known/unknown.

• Goals:
I Recover teacher’s policy π∗ directly: behavioral cloning, or imitation learning.
I Recover teacher’s latent reward function R∗(s, a, s′): IRL.
I Recover teacher’s policy π∗ indirectly by first recovering R∗(s, a, s′):

apprenticeship learning via IRL.
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IRL Formulation 1: Small, Discrete MDPs

• Given: An incomplete MDPM = (S,A, T, R, γ)
I known transition model T (s, a, s′) = P (s′ | s, a), ∀s, a, s′

I unobserved but bounded reward signal, |R(s, a, s′)| ≤ rmax, ∀s, a, s′ (for
simplicity, consider state-dependent reward functions, R(s))

I known, supposedly optimal policy π∗(s), ∀s ∈ S, instead of {ξi}ni=1.

• Find R : S → [−rmax, rmax] such that teacher’s policy π∗ is optimal,
I furthermore: simple, and robust reward function
I Notes: in the following we fix an enumeration on the state space:
S =

{
s1, . . . , s|S|

}
. Then R is a column vector in R|S|, with Ri = R(si).
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IRL Formulation 1: Small, Discrete MDPs

• Find R ∈ R|S| such that teacher’s policy π∗ is optimal.

• Recall Bellman optimality theorem (for a known MDP):

π∗ is optimal

⇐⇒ π∗(s) ∈ arg max
a

Qπ
∗
(s, a), ∀s ∈ S

⇐⇒ Qπ
∗
(s, π∗(s)) ≥ Qπ

∗
(s, a), ∀s ∈ S, a ∈ A (1)

• Define policy-conditioned transition matrices P ∗ and Pa ∈ [0, 1]|S|×|S|:

[P ∗]ij := P (sj | si, π∗(si)), and [Pa]ij := P (sj | si, a), ∀si, sj ∈ S
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IRL Formulation 1: Small, Discrete MDPs

• We can represent the constraints on R as [3]:

(P ∗ − Pa) (I − γP ∗)−1R � 0, ∀a ∈ A (2)

• Proof:
I Bellman equations =⇒ Qπ

∗ (s, a) = R(s) + γ
∑

s′
P (s′ | s, a)V π∗ (s′), and

V π
∗ = (I − γP ∗)−1R.

I Denote by Qπ∗π a length-|S| column vector with elements
Qπ
∗
π (s) = Qπ

∗ (s, π(s)), i.e., Qπ∗π = R+ γPπV π
∗ .

I The set of |S| × |A| constraints in Eq. (1) can be written in matrix form (by
fixing an action a for all starting states s ∈ S) as:

Qπ
∗
π∗ −Q

π∗
a � 0,∀a ∈ A ⇐⇒ Eq. (2)
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IRL Formulation 1: Small, Discrete MDPs

• Challenges:
I What if noisy teacher? (i.e., at , π∗(st) at some t)
I Instead of full π∗(s), ∀s ∈ S, only given sampled trajectories {ξi}ni=1?
I Computationally expensive/infeasible: |S| × |A| constraints for each R
I Reward function ambiguity: IRL is ill-posed! (R = 0 is a solution.)
I From reward-shaping theory: If the MDPM with reward function R admits π∗
as an optimal policy, thenM′ with affine-transformed reward function below also
admits π∗ as an optimal policy: R′(s, a, s′) = αR(s, a, s′) + γψ(s′)− ψ(s), with
ψ : S → R, α , 0.
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IRL Formulation 1: Small, Discrete MDPs

• One solution (to the reward ambiguity issue): find simple, and robust R,
I e.g., use `1-norm penalty ‖R‖1, and
I maximize sum of value-margins ∆V π∗ (s) of π∗ & second-best action,

∆V π
∗
(s) = Qπ

∗
(s, π∗(s))− max

a,π∗(s)
Qπ
∗
(s, a) = min

a,π∗(s)

[
Qπ
∗
(s, π∗(s))−Qπ

∗
(s, a)

]
• Combining altogether:

max
R∈R|S|

{∑
s∈S

min
a∈A\π∗(s)

{
(P ∗s − Pas ) (I − γP ∗)−1R

}
− λ ‖R‖1

}
s.t. (P ∗ − Pa) (I − γP ∗)−1R � 0, ∀a ∈ A
|R(s)| ≤ rmax, ∀s ∈ S

with Pas the row vector of transition probabilities P (s′ | s, a),∀s′ ∈ S, i.e., P ∗s , Pas are
the s-th rows of P ∗, Pa, respectively.
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IRL Formulation 2: With LFA

• For large/continuous domains, with sampled trajectories.

• Assume s0 ∼ P0 (S); for teacher’s policy π∗ to be optimal:

E

[
∞∑
t=0

γtR(st)
∣∣∣π∗] ≥ E[ ∞∑

t=0

γtR(st)
∣∣∣π] , ∀π

• Using LFA: R(s) = w>φ(s), where w ∈ Rn, ‖w‖1 ≤ 1, and φ : S → Rn.

E

[
∞∑
t=0

γtR(st)
∣∣∣π] = E

[
∞∑
t=0

γtw>φ(st)
∣∣∣π] = w>E

[
∞∑
t=0

γtφ(st)
∣∣∣π] = w>µ(π)

• The problem becomes find w such that w>µ(π∗) ≥ w>µ(π), ∀π

• µ(π): feature expectation of policy π – evaluated with sampled trajectories from π

µ(π) = E

[
∞∑
t=0

γtφ(st)
∣∣∣π] ≈ 1

N

N∑
i=1

Ti∑
t=0

γtφ(st)
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Feature Expectation Matching: Max Margin

• Let expert’s feature expectation be µE = µ(π∗)

• To find a policy who’s performance is close to that of the expert’s, we need to find a
policy π̄ such that ‖µE − µ(π̄)‖ ≤ ε:∣∣∣∣∣E

[
∞∑
t=0

γtR(st)
∣∣∣π̄]− E[ ∞∑

t=0

γtR(st)
∣∣∣π∗]∣∣∣∣∣ =

∣∣w>µ(π̄)− w>µE
∣∣

≤ ‖w‖2 ‖µ(π̄)− µE‖2
≤ 1 · ε

• Let Π denote the set of stationary policies for an MDP. Given two policies
π1, π2 ∈ Π, we can construct a new policy π3 by mixing them together.

• π3 operates by flipping a coin with bias λ, and with probability λ picks and always
acts according to π1, and with probability 1− λ always acts according to π2.

• From linearity of expectation, clearly we have that µ (π3) = λµ (π1) + (1− λ)µ (π2).
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Feature Expectation Matching: Max Margin

Algorithm 1 Max-Margin

Initialize π(0), compute µ(π(0)), i = 1 and t0 =∞
while t(i) > ε do
Compute t(i) = maxw minj∈{0...(i−1)} w

T (µE − µ(j))
Solve for π(i) with R = wTφ
Compute µ(i)

Set i← i+ 1
end while
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Feature Expectation Matching: Max Margin

• Similar to SVMs, we aim to find the separating hyperplane given a set of points,
where µE is given a label of 1 and {µ(π(j)) : j = 0, . . . , (i− 1)} a label of -1:

max
t,w

t

s.t. w>µE ≥ w>µ(j) + t, j = 0, . . . , i− 1
‖w‖2 ≤ 1

• When the algorithm terminates with t(n+1) ≤ ε, we have:

∀w with ‖w‖2 ≤ 1 ∃i s.t. w>µ(i) ≥ w>µE − ε

• Since ‖w∗‖2 ≤ ‖w∗‖1 ≤ 1, this means that there is at least one policy from the set
returned by the algorithm, whose performance under R∗ is at least as good as the
expert’s performance minus ε.
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Feature Expectation Matching: Max Margin

Initialization
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Feature Expectation Matching: Max Margin

First Iteration
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Feature Expectation Matching: Max Margin

First Iteration
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Feature Expectation Matching: Max Margin

Second Iteration
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Feature Expectation Matching: Max Margin

Second Iteration
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Feature Expectation Matching: Max Margin

Third Iteration
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Feature Expectation Matching: Max Margin

• We can find the point closest to µE in the convex closure of µ(0), . . . , µ(n) by
solving the following QP:

min ‖µE − µ‖2 s.t. µ =
∑
i

λiµ
(i), λi ≥ 0,

∑
i

λi = 1.

• Because µE is “separated" from the points µ(i) by a margin of at most ε, we know
that for the solution µ we have ‖µE − µ‖2 ≤ ε.

• Further, by “mixing" together the policies π(i) according to the mixture weights λi,
we obtain a policy whose feature expectations are given by µ.
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Convergence of Max-Margin Algorithm [1]

Theorem
For φ : S → [0, 1]k, the algorithm terminates after at most

O
(

k

(1− γ)2ε2
log

k

(1− γ)ε

)
iterations, where k is the number of features.
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Example: Gridworld

• Setup:
I 32× 32 grid
I Non-overlapping 4× 4 regions called macrocells
I For each of the 64 macrocells, there one feature φi(s) indicating if state s is in
macrocell i

I R∗ = wTφ where p(wi = 0) = 0.95 and p(wi = 1) = 0.05
I γ = 0.99
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Example: Gridworld

Figure: Convergence of Max-Margin algorithm
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Maximum Causal Entropy IRL [5, 4]

• The underlying reward function is given by RE : S ×A → R.

• We consider the learner model with parametric reward function RLλ : S ×A → R
where λ ∈ Rd is a parameter.

• The reward function also depends on the learner’s feature representation
φL : S ×A → Rd′ .

• For linear reward model, λ represents the weights as RLλ (s, a) = λ>φL (s, a).

• As an example of a non-linear reward model, λ could be the weights of a neural
network with φL (s, a) as input layer and RLλ (s, a) as output.
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Maximum Causal Entropy IRL

• For any policy π, the occupancy measure ρ and the total expected reward ν of π in
the MDPM are defined as follows respectively:

ρπ (s, a) := (1− γ)π(a | s)
∞∑
τ=0

γτP {Sτ = s | π,M}

νπ :=
1

1− γ

∑
s,a

ρπ (s, a)RE (s, a)

Here, P {Sτ = s | π,M} denotes the probability of visiting the state s after τ steps by
following the policy π.

• Similarly, for any demonstration ξ = {(sτ , aτ )}τ=0,1,..., we define

ρξ (s, a) := (1− γ)
∞∑
τ=0

γτ I {sτ = s, aτ = a}

Then for a collection of demonstrations Ξ = {ξt}t=1,2,..., we have
ρΞ (s, a) := 1

|Ξ|
∑

t
ρξt (s, a).
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Maximum Causal Entropy IRL

• Let πL denote the learner’s final policy at the end of teaching.

• The performance of the policy πL (w.r.t. πE) inM can be evaluated via the
following measures (for some fixed ε > 0):

1.
∣∣∣νπE − νπL ∣∣∣ ≤ ε, ensuring high reward [1, 4].

2. DTV

(
ρπ
E
, ρπ

L
)
≤ ε, ensuring that learner’s behavior induced by the policy πL

matches that of the teacher [2]. Here DTV (p, q) is the total variation distance
between two probability measures p and q.
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Maximum Causal Entropy IRL

• Given a collection of demonstrations Ξ = {ξt}t=1,2,... (where
ξt = {(st,τ , at,τ )}τ=0,1,...), the MCE-IRL algorithm returns a parametric policy:

πLλ (a | s) = exp (Qλ (s, a)− Vλ (s)) (3)

Vλ (s) = log
∑
a

exp (Qλ (s, a))

Qλ (s, a) = RLλ (s, a) + γ
∑
s′

T (s′ | s, a)Vλ
(
s′
)
.

• The optimal parameter is obtained via solving

maximize
λ

c (λ; Ξ) :=
∑
t

∑
τ

log πLλ (at,τ | st,τ ) . (4)
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Maximum Causal Entropy IRL

• The above optimization problem can be solved by the gradient descent update rule
given by

λ+ ← λ− ηg, (5)

where η denotes the learning rate, and the gradient is given by

g =
∑
s,a

{
ρπ
L
λ (s, a)− ρΞ (s, a)

}
∂RLλ (s, a)

∂λ
.

• For any given λ, the corresponding policy πLλ can be efficiently computed via
Soft-Value-Iteration procedure (see [4, Algorithm. 9.1]).
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Maximum Causal Entropy IRL: Linear Reward

• Learner model with linear reward function RLλ (s, a) = λ>φL(s, a).

• Teacher with linear reward function RE(s, a) =
(
wE
)>

φL(s, a).

• Let µπL =
∑

s,a
ρπ
L (s, a)φL(s, a), and µΞ =

∑
s,a

ρΞ(s, a)φL(s, a).

• The corresponding primal problem (with feature expectation matching):

maximize
πL(a|s)

∞∑
τ=0

γτH(aτ | a0:τ−1, s0:τ )

subject to µπ
L

= µΞ∑
a

πL(a | s) = 1, πL(a | s) ≥ 0,

(6)

where H is the conditional entropy.
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Maximum Causal Entropy IRL: Linear Reward
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Maximum Causal Entropy IRL: DNN Reward

• Consider a feature map Φ which takes φL(·, ·) ∈ Rd′ as input, and is parameterized
by the weights W ∈ Rd1 of a deep neural network, i.e., Φ

(
φL(·, ·);W

)
∈ Rd2 .

• Given α ∈ Rd2 , denote λ = (α,W ) ∈ Rd with d = d1 + d2.

• Then for the learner model with reward function RLλ (s, a) = α>Φ
(
φL(s, a);W

)
,

we attempt to learn α, and W jointly.
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Maximum Causal Entropy IRL: DNN Reward
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