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Reminder: Logistic Regression

YX; W) = o(W - %)

Male

1
1+ exp(—W - X)

oo ] o °®

Height (in.)

Given a training set {(X,,7,);<,<y} minimize

EW) = - ) (t,Iny(x,) + (I — £,)In(l = y(x,))

with respect to w.

—> Convex optimization problem.
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Reminder: Maximizing the Margin

. I o
VV>X< = mln(wv{fn})al |W2| | + CZ én,

n=1

subjectto Vn, ¢,-(W-x)>1-¢& and&, > 0.

- C 1s constant that controls how costly constraint violations are.

» The problem is still convex.

 How do you minimize a function of several variables?
 Why does 1t matter that the problem is convex?

—> Let’s talk about that today. g
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Derivative of a 1-Variable Function

y =fx)

X
Ax 0

 The derivative of a function y = f(x) of a single variable x is the

rate at which y changes as x changes.

- It 1s measured for an infinitesimal change in x, starting from a

oint x,, and written as
p 0

: _ﬂ_ . Jxp + Ax) = fxp)
T %) = dx Alylclllo AXx

—> The der1vative 1s the slope of the tangent at x,,. A

"N
r



Derivative of a Linear Function

A (z2, ¥2) ’
/ |Ay=ys—
/:l‘," (;
(z1,) /—
/' Ar=x9—1
/()
\ >

- The tangent to the function 1s the function itself: The slope 1s constant.

. Forexample,y=2x—1and —=2.
dx
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Derivative of a Non-Linear Function

457

357

257

157}

- The tangent (in red) to the function varies with x and so does the
slope.

d
. For example, y = x> + 2x + 2 and d_y = 2x + 2.
X
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Evolution of the Tangent

| f(x) = sin (2?) + 1 /\

\ A= (=2,251)

2-

4R

_'2 \/_'1 0 i v :'3 Figure from Wikipedia
'(-2) = —5.99
y = xsin(x?) + 1
dy

— = sin(x?) + 2x? cos(x?)
dx




First and Second Derivatives

‘ f(x) = sin(2*) + 1 /\

VA =(-2,251) y = xsin(x?) + 1
2- d
& sin(x?) + 2x? cos(x?)
) dx
/. e
YAV P v : _y2 = 6x cos(x?) — 4x7 sin(x?)
dx
f(—2) = —5.99
dy d*y .
— =0and — > 0 : Minimum
dx dx?
dy d*y |
— =0and — < 0 : Maximum
dx dx?
dy dzy

— =0and — =0
ax o an A
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Convex vs Non-Convex

° ' ' ' ‘ f(x) =z sin (x*) + 1
451 j

\ 1 =(-2 ‘).
’| | A= (-2,251)
3.5 24
3..

25| -
| | /
] ] 0 ] ] 1 ]
o ' -2 \/- 0 1 3
1 . ) .
3 2 = 0 : e
f(—=2)=-5.99

* There 1s only one minimum. * There are several local minima.
* The second derivative 1s >= 0. * There 1s one global minimum.

—> Non-convex functions are much more difticult to
minimize than convex ones.
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Minimizing a Convex Function

The line segment between
any two points on the
curve lies above the curve.

df)
dx

0

For some simple functions this can be done in closed form, that 1s,
by solving an equation.
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Minimizing a Simple Convex Function

fxX)=x*4+2x+2

d
JX) i
dx
d *
S et +2=0
dx
S WxF=-=12
S x*F=—1
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Minimizing a Generic Convex Function

When the minimum cannot be found in closed-form, we use the
derivative:

At x,, the slope 1s negative.
Hence, one should move in
the positive direction
(Ax > 0) to go towards the
minimum

At x,, the slope 1s positive.
Hence, one should move in
the negative direction
(Ax < 0) to go towards the
minimum

—> One should move 1n the direction opposite to the derivative
for minimization

o
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Minimizing a Convex Function

Simplest algorithm:
1. Imtialize x; (e.g., randomly)

2. While not converged

df (x_1)
dx

2.1. Update x, < x,_; — 1

- 11 defines the step size of each iteration.

- In ML, 1t 1s often referred to as the learning rate.
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Minimizing a Convex Function

=Pr-L



Minimizing a Convex Function

-70 -60 -50 -40 -30 -20 -10
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Minimizing a Convex Function
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Minimizing a Convex Function

10 ' ' ' ' '
-70 -60 -50 -40 -30 -20 -10
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Minimizing a Convex Function

Potential stopping Criteria:
- Change in function value less than threshold: | f(x;_) — f(x)| < é.
- Change in parameter value less than threshold: |x,_; — x;| < o.

- Maximum number of iterations reached without a guarantee to have
reached the minimum.
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Influence of the

22

The steps are of the appropriate
size for convergence.

Step Size

n =120

-70 -60 -50 -40 -30 -20 -10

The steps are too large and the
algorithm starts jumping

between these two points.
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Influence of the Starting Point

-70 -60 -50 -40 -30 -20 -10

Converges.
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Converges to the same place,
but faster.
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Minimizing a Non-Convex Function

| Global minimum

2 r 0 1 2 3 2 p 0 1 2 3
XO —_ 18 XO —_ 1
=L Local minimum Saddle point




Minimizing a Non-Convex Function

n=0.01, x,=1.5 n=0.1, x,=1.5

Global minimum Saddle point

—> No guarantees when the function is not convex!

.
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Functions of Multiple Variables

Multivariate function:

f: RP > R
y =f(X) = f(x, ..., Xp)

Partial derivative:

Oy o fGeox+Ax ) =L xy, )
— = lim
O0X;  Ax—0 Ax

(Gradient vector:

oo

5x; Oxp

Vi=I1




Quadratic Function

f(X) = x7 + x}

0 AN
_f == 2x1 0 4.9,

dxl 6

of J(X) 4. 4
e 2X2

aXZ

2x, 5
Vi = |, | €R
X2

The color also represents the value of f(x)
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Sinusoidal Function

f(X) = sin x; + cos x,

o
6_x1 = cOoS(x;)
of .
6_x2 = — sin(x,)
. COS(xl) 10
VIx) = [— sin(x,)

5
D

The color also represents the value of f(x)

EPFL A



S
m

n

dl

1
_|_
2x,

_|_

X3 + X3Xy

)

>+ X1

2 X3

= X’

f(x) =
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Gradient Properties

{0

£x) -

3

et > L. ~J
.5”\_ . . N [',,.-... - S0
— ) -'\__ Y - __/" 60
~40 TR e |
. T m
L = 0
. L
1 YT 40
A -~ D
& —R0

* The gradient at a point x indicates the direction of greatest
increase of the function at x.

e Its magnitude is the rate of increase in that direction.
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Gradient Properties

The gradient vanishes (becomes a zero vector) at the stationary
points of the function:

e Minima,
e Maxima,
e Saddle points.
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Convex vs Non-Convex

Convex: The line segment Non-convex: At least one line
between any two points on the  segment between two points
function lies above the function lies in part below the function.
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Minimizing a Convex Function

O
\\‘\“‘0
s
\‘““ X ¢

R

Vix®) =0

« Because the gradient is a vector, this yields a system of
equations.

e It can still be solved in closed form for some functions.
=PrL




Minimizing a Simple Convex Function

fx) = x12 + x22

0 0
_f == 2x1 _f — 2.7(:2
0x1 aX2
Vix) =0 { 170
f *) = 2.X2 — O

¢>x1=x2=0

=Pr-L
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Revisiting K means

min 22 % = el

() () =

such that

e {0,1}, Vi, k

I"
K

k
2.1 =

k=1

—> We will derive the solution by alternating between the
two types of variables.

g
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Revisiting K means

N K
‘12 2 rellx; — pll?

i=1 k=1
suchthat r*e {0,1}, Vi, k

l

K
k
2.1 =

k=1

» Because of the constraints, for each sample, only one ¥ can be 1.

« We take it to be the one corresponding to the nearest center:
r 1, if k = argmin||x; —,uj||2
ryo= < J

0, otherwise

o~
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Revisiting K means

K
@52 2. %= el

i=1 k=1

 This can be done by zeroing out the gradient for each center:

oy, P
* This yields: N &
Zizl Vi X
Hi = N
2 TF

 This corresponds to the mean of the samples assigned to cluster «.

.
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Back to Logistic Regression

e Replace the step function by a smooth function o.
e The prediction becomes y(x;w) = o(W - X).

e Given the training set {(xn,%n)1<n<n} where ¢, € {0,1}, minimize the
cross-entropy

~

E(w) == {talny, + (1 —t,)In(1 — y,)}

"~y

Yn — y(Xn; W)

with respect to w.

E 1s convex but cannot be minimized 1n closed form!
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Gradit Descent

Simplest algorithm: The gradient replaces the derivative.

1. Imtialize X, (e.g., randomly)
2. While not converged
2.1. Update x, < x;,_; —n Vf

- 11 defines the step size of each iteration.

 In ML, 1t 1s often referred to as the learning rate.
EpEL o



Minimizing a Non-convex Function

f(X) = sin x; + cos x,

COS(X
) e R?

Vi(x)

—sin(x,)

Stopping criteria:
« Thresholding the change 1n function value.

- Thresholding the change in parameters, i.e. ||X;,_; — X;|| < 6.

=Pr-L
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Theoretical Justification

Steepest gradient descent:

Xp < X1 =1 VS

First order Taylor expansion:

f(x 4+ dx) & f(x) + Vf(x) dx
f(x = Vf() = f) =l VAR)II* < f(x) k

Issues:
* Justification but no guarantee

* How do we choose choose n?
e Many iterations in long and narrow valleys.

=L Triggs et al., Bundle Adjustment, 2000 A



Trouble Spots

n=2(wvs0.1) 7
Jumps between 2 solutions N

s
OO R
AT

»
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Learning Rate
X — 2V f

X
X—mV/J

Vf

n too large:

e The first order approximation stops being valid.
e f can increase instead of decrease.

N too small:
e Convergence rate will be very slow.

Partial solution:
e Instead of using a fixed learning rate perform a line search in the direction

of the gradient.
=Pr-L ‘!!!



Line Search

A
. . — e ;
\ e \*
< N N \ h

g - \ D
Current position and gradient direction

e Search along the gradient direction for a minimum.
e This is a 1D search and therefore doable.
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Python Implementation

def steepestGrad(objF,x0,nlt=100,eps=1e-6,step=1.0):

for 1 in range(nlt):

y0,g0=0bjF(x0) # Compute the value of objF and its gradient.
x1=x0-step*g0 # Take a step in the direction of the gradient.
yl, =objF(x1) # Compute the new value of objF.
while(y1>y0): # Check that the function value has decreased.

if(np.allclose(x0,x1,eps)): # Stopping condition.

return x0
step=step/2.0 # Reduce the step size.
x1 =x0-step*g0 # Try again.

y1l, =objF(x1)
x0,y0=lineSearch(objF,x0,y0,x1,yl,params) # arg min Axg + (1 — X\)x;
A

return x0




Local Minima

The result depends critically on the starting
point and is very likely to be closest local
minimum, which is not usually the global one.
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Zig-Zagging towards the Solution

* Successive line searches tend to be perpendicular to each other.
* They would be if we found a true local minimum each time.
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Conjugate Gradient

Take the search direction to be a weighted average of
the gradient vector and the previous search directions:

1. Start at xg.

2. go = VF(xq).

3. For k from 0 to n — 1:

(a) Find aj that minimizes f(xx + argk)-

(b)

(c)
)

Xk+1 = Xk T Ok

IV e )P
Bk = N Foar
(d) gr+1 =~V [f(Xkt1) + Brgr.
4. x9 = X, and go to step 2 until convergence. \ //
=prp —> Faster convergence. ﬁ
=rn




Python Implementation

def conjugateGrad(objF,x0,nlt=100,eps=1e-10,step=1.0):

y0,g0=0bjF(x0)
h0=-g0 # g: Function gradient.
g0 =h0 # h: Conjugate direction.

for i in range(1,nlt):
10=np.linalg.norm(h0)
if(10<eps):
print('Gradient has vanished.")
break
x1  =x0+(step/10)*h0
yl, =objF(x1)

while(y1>y0): # Check that the function value has decreased.
if(np.allclose(x0,x1,eps)): # Stopping condition.
return x0

step=step/2.0
x1 =x0+(step/np.linalg.norm(h0))*h0
yl, =objF(x1,False)

x1,y1=lineSearch(objF,x0,y0,x1,y1)

yl,gl=0bjF(x1) # Recompute value and gradient.

gl=-gl

hl=gl

1f((1%n)>0): # Compute conjugate direction but reset every n iterations.
gamma=np.dot((g1-g0),g1)/np.dot(g0,g0) # Modified Polak Ribiere, i.e. only if gamma > 0.
if(gamma>0):

hl=gl+gamma*h0

# Switch variables
g0=gl
hO=hl
x0=x1

y0=yl

- Optional




In Real Life (1)

import scipy

...... # return the value of the function.
....... # return the gradient of the function.

x0=.... # starting point.
x 1= scipy.optimize.fmin_cg(f,x0,fprime=g,epsilon=eps,maxiter=nlt)

FL Optional .



In Real Life (2)

GO:_ ’ gle conjugate gradient python 4 Q

All Images Videos News Shopping More Settings Tools

About 196.000 results (0,81 seconds)

scipy.sparse.linalg.cg — SciPy v1.2.1 Reference Guide - SciPy.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cg.html ~
scipy.sparse.linalg. cg (A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None,
atol=None)y|. Use Conjugate Gradient iteration to solve Ax=b .

scipy.optimize.fmin_cg — SciPy v0.14.0 Reference Guide
https://docs.scipy.org/doc/scipy-0.14.0/reference!.../scipy.optimize.fmin_cg.htm| v

Minimize a function using a nonlinear conjugate gradient algorithm. ... Defaults to None, in which
case the gradient is approximated numerically (see epsilon, ...

conjugate gradient method implemented with python - GitHub
https://gist.github.com/sfujiwara/b135e0981d703986b6c2 ~

from scipy.sparse.linalg import cg. ... Solve a linear equation Ax = b with conjugate gradient method.
... A: 2d numpy.array of positive semi-definite (symmetric) matrix.

The Concept of Conjugate Gradient Descent in Python - llya Kuzovkin
ikuz.eu/2015/04/15/the-concept-of-conjugate-gradient-descent-in-python/ ¥

Apr 15, 2015 - While reading “An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain” | decided to boost understand by repeating the ...




Second Order Methods

Second order Taylor expansion:

f(x+dx) ~ f(x)+ Vf(x)'dx + %dXTH(X)dX
Vflx+dx)~ Vf(x)+ H(x)dx

Newton method:
Solve H(x)dx = —V f(x)
= dx = —H(x) 'V f(x)
Vfx+dx)=~0
f(x +dx)) = f(x) = Vi(x)"H(x)"'Vf(x)

V60" Hx) T H ) H (%)™ V(%

~ ()~ 5 VST H) T (x)
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O pt i ona I Triggs et al., Bundle

Adjustment, 2000
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Newion in 1D

0=g(z +dzx) = g(z) + g'(x)dz

9@
== g'(x)
. g(x)
9</ T4 X 7 (2)
gxt) //
v S _/




~ Finding the Root of a Polynomial

f(x)

f[') = 627 — Dt — 42% + 322

. _ii'here IS o;nore tha;Sn one rogt.
* The one you find depends on the starting point. ﬂ
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Potential Instability

/

* Individual steps can be very large, leading to instability.

— Optional

-
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Damped Newton

Second order Taylor expansion:

f(x+dx) ~ f(x)+ Vf(x)Tdx + %dXTH(X)dX
Vf(x+dx)~ Vf(x)+ H(x)dx

Introduce a damping term:

Regular Newton Method: H(x)dx = —V f(x)

X < X + dx with { Damped Newton: (H(x)+ A)dx = —V f(x)

e \ = 0: Regular Newton

e )\ >> (: Gradient descent

Optional -
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-0.1

0.02

0.14

0.26

0.38

0.5

0.62

0.74

0.86

0.98

1.1

m

- Optional

Qualitative Result

0.1 0.1
0.02 0.02
0.14 0.14
0.26 0.26
0.38 0.38
0.5 0.5
0.62 0.62
0.74 0.74
0.86 0.86
) & 0.98 ) & 0.98 ) &
11 11

-0.1 0.02 0.14 0.26 0.38 0.5 0.62 0.74 0.86 0.98 1.1 -0.1 0.02 0.14 0.26 0.38 0.5 0.62 0.74 0.86 0.98 1.1 -0.1 0.02 0.14 0.26 0.38 0.5 0.62 0.74 0.86 0.98 1.1

Steepest gradient Conjugate gradient Damped Newton

Damped Newton converges much faster!
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Python Implementation

def dampedNewton(objF,x,nlt=10,lbda=None):

for 1 in range(nlt):
f,g, H=0bjF(x) # Evaluate f, its gradient, and its Hessian.
x -= linSolve(H,g,Ibda=Ibda) #Solve(H+AD)x=g¢g

return x

def linSolve(A,b,Ibda=None):

if(Ibda is not None):

A=A+lIbda*np.cye(A.shape[0]) #A<—A+ A1
x=np.linalg.solve(A,b) # Solve Ax=Db
return(x)

L Optional




Optimization in Short

e Convex functions have a global minimum.

e [t can be found using either 1st or 2nd
order methods. The latter is usually faster
but requires computing second derivatives.

e Non-convex functions can be optimized in a
similar manner but this will usually yield a
local minimum.
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