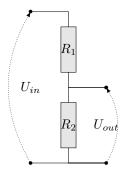
Exercice pour le cours système de mesure


Jean-Marie Fürbringer

12 avril 2021

Le diviseur de tension - Énoncé

Un diviseur de tension est un montage électronique simple qui permet de diviser une tension d'entrée,. Il est constitué de deux résistances en série. Il est utilisé comme son nom l'indique pour créer une tension donnée inférieur à une source de tension fixe.

Pour une description détaillée voir par exemple l'article correspondant sur Wikipédia. Le circuit équivalent est présenté à la figure 1.

-	R_1	R_2	Z_1	Z_2	U_{in}
1	10 Ω	20 Ω	1 Ω	100 Ω	100 V
2	$10~\Omega$	$10~\Omega$	$1~\Omega$	$100~\Omega$	100~V
3	$100~\Omega$	$100~\Omega$	$1~\Omega$	$100~\Omega$	100~V
4	$100~\Omega$	$100~\Omega$	$1~\Omega$	$100~\Omega$	100~V
5	$100~\Omega$	$100~\Omega$	$1~\Omega$	$1 k\Omega$	100~V
6	$100~\Omega$	$100~\Omega$	$1~\Omega$	$1 \ k\Omega$	10 V
7	$100~\Omega$	$10~\Omega$	$1~\Omega$	$1~k\Omega$	10~V

Table 1 – Cas pour l'application numérique

FIGURE 1 – Diviseur de tension

Si on applique en entrée un tension U_{in} et que l'on connecte le quadripôle en sortie avec une impédance Z_{ex} , grâce à la loi de maille et à la loi d'Ohm, il est possible d'exprimer le tension de sortie U_{out} en fonction de la tension d'entrée, de l'impédance externe et des caractéristiques du circuit, les résistances R_1 et R_2 :

$$U_{out} = U_{in} \frac{R_2 Z_{ex}}{(R_1 + R_2) Z_{ex} + R_1 R_2}$$
 (1)

Si l'impédance externe Z_{ex} est très supérieure à l'impédance interne constituée par R_1 et R_2 , on pourra simplifier l'équation 1 qui devient alors

$$U_{out} = U_{in} \frac{R_2}{(R_1 + R_2)} \tag{2}$$

- a) Déterminer les valeurs de R_1 et R_2 à partir de la mesure du rapport $\frac{U_{out}}{U_{in}}$ pour une impédance externe de $Z_{ex}=1\Omega$ et de $Z_{ex}=1000\Omega$.
- b) Déterminer la précision des résultats en fonction de la précision de la mesure de tension effectuée avec un multimètre AM-500 dont les caractéristiques sont données ci-après.
- c) Application numérique : selon le tableau 1

Gamme	Résolution	Précision	
400,0 mV	0,1 mV	± (1,2 % + 3 chiffres)	
4,000 V	1 mV		
40,00 V	10 mV	± (1,0 % + 3 chiffres)	
400,0 V	100 mV		
600 V	1 V	± (1,2 % + 3 chiffres)	

TABLE 2 – Données du fabricant au sujet de la précision du multimètre AM-500 $\,$