Convolutional Neural Nets

Pascal Fua IC-CVLab

Fully Connected Layers

- The descriptive power of the net increases with the number of layers.
- In the case of a 1D signal, it is roughly proportional to $\prod_n W_n$ where W_n represents the width of a layer.

Processing Digital Images

 $\begin{array}{c} 136 \ 134 \ 161 \ 159 \ 163 \ 168 \ 171 \ 173 \ 173 \ 171 \ 166 \ 159 \ 157 \ 155 \\ 152 \ 145 \ 136 \ 130 \ 151 \ 149 \ 151 \ 154 \ 158 \ 161 \ 163 \ 163 \ 159 \ 151 \\ 145 \ 149 \ 149 \ 145 \ 140 \ 133 \ 145 \ 143 \ 145 \ 145 \ 145 \ 146 \ 148 \ 148 \\ 148 \ 143 \ 141 \ 145 \ 145 \ 145 \ 141 \ 136 \ 136 \ 135 \ 135 \ 136 \ 135 \ 133 \\ 131 \ 131 \ 129 \ 129 \ 133 \ 136 \ 140 \ 142 \ 142 \ 138 \ 130 \ 128 \ 126 \ 120 \\ 115 \ 111 \ 108 \ 106 \ 106 \ 110 \ 120 \ 130 \ 137 \ 142 \ 144 \ 141 \ 129 \ 123 \\ 117 \ 109 \ 098 \ 094 \ 094 \ 094 \ 100 \ 110 \ 125 \ 136 \ 141 \ 147 \ 147 \ 145 \\ 136 \ 124 \ 116 \ 105 \ 096 \ 096 \ 100 \ 107 \ 116 \ 131 \ 141 \ 147 \ 150 \ 152 \\ 152 \ 152 \ 157 \ 157 \ 159 \ 135 \ 121 \ 120 \ 120 \ 121 \ 127 \ 139 \ 150 \ 157 \ 159 \\ 159 \ 157 \ 157 \ 159 \ 135 \ 121 \ 120 \ 120 \ 121 \ 127 \ 136 \ 147 \ 158 \ 163 \\ 165 \ 163 \ 163 \ 163 \ 166 \ 168 \ 170 \ 173 \ 175 \ 178 \ 151 \ 151 \ 153 \ 156 \\ 161 \ 170 \ 176 \ 177 \ 177 \ 179 \ 176 \ 177 \ 179 \ 155 \ 157 \\ 161 \ 162 \ 168 \ 176 \ 180 \ 180 \ 180 \ 180 \ 180 \ 180 \ 175 \ 175 \ 178 \ 180 \$

- A MxN image can be represented as an MN vector.
- It can therefore be used an input to an MLP.

ΈΡΞΙ

However the neighborhood relationships are then lost.

—> This is not the best approach.

Image Specificities

- In a typical image, the values of neighboring pixels tend to be more highly correlated than those of distant ones.
- An image filter should be translation equivariant.

—> These two properties can be exploited to drastically reduce the number of weights required by CNNs using so-called convolutional layers.

1D Convolution in the Continuous Domain

EPFL

Example 1: Convolution with a Gaussian

- Each sample is replaces by a weighted average of its neighbors.
- This yields a smoothed version of the original signal.

Example 2: Convolution with the Derivative of a Gaussian

 Convolving with the derivative of a gaussian is the same as smoothing first and then differentiating.

Input

F. Fleuret. EE-559 – Deep learning

W - w + 1

F. Fleuret. EE-559 – Deep learning

W - w + 1

F. Fleuret. EE-559 – Deep learning

F. Fleuret. EE-559 – Deep learning

1D Convolution

W - w + 1

Input

Input image: f

Convolution mask m, also known as a kernel.

$$\begin{bmatrix} m_{11} & \dots & m_{1w} \\ \dots & \dots & \dots \\ m_{w1} & \dots & m_{ww} \end{bmatrix}$$

$$m * *f(x, y) = \sum_{i=0}^{w} \sum_{j=0}^{w} m(i, j)f(x - i, y - j)$$

Convolution Example

$$\mathbf{h}_{1,1} = \sigma(\mathbf{f}_{1,1} * \mathbf{x} + \mathbf{b}_{1,1})$$

This approximates an x derivative.

2D Convolutional Layer

input neurons

- The same weights $w_{x,y}$ are used to compute all the activations.
- There are far fewer weights that in a fully connected layers.
- The neighborhood relationships are explicitly used.

Feature Maps

- In practice, one uses several **filters**, that is, sets of weights $w_{x,y,}$ to compute several convolved versions of the input.
- These are known as **feature maps**.

Derivative Filters

Derivatives

Learned filters

Pooling Layer

hidden neurons (output from feature map)

000000000000000000000000000000000000000	max-pooling units
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000
000000000000000000000000000000000000000	000000000000
	000000000000000
000000000000000000000000000000000000000	000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	

- Reduces the number of inputs by replacing all activations in a neighborhood by a single one.
- Can be thought as asking if a particular feature is present in that neighborhood while ignoring the exact location.

Adding the Pooling Layers

The output size is reduced by the pooling layers.

Pooling Example

Max-pooling:

$$\mathbf{h}_{i}[u, v] = \max\{ \begin{array}{ccc} \mathbf{h}_{i-1}[2u, & 2v], \\ \mathbf{h}_{i-1}[2u, & 2v+1], \\ \mathbf{h}_{i-1}[2u+1, & 2v], \\ \mathbf{h}_{i-1}[2u+1, & 2v+1] \end{array} \}$$

24

Adding a Fully Connected Layer

- Each neutron in the final fully connected layer is connected to all neurons in the preceding one.
- Deep architecture with many parameters to learn but still far fewer than an equivalent multilayer perceptron.

PyTorch Translation (1)

class ConvNet(nn.Module):

```
def __init__(nChannel=10,nHidden=50):
    self.cv1 = nn.Conv2d(1, nChannel, kernel_size=5)
    self.cv2 = nn.Conv2d(nChannel, 20, kernel_size=5)
    self.fc1 = nn.Linear(320, nHidden)
    self.fc2 = nn.Linear(nHidden,10)
```

def forward(self,x):

```
x = F.relu(F.max_pool2d(self.cv1(x), 2))
x = F.relu(F.max_pool2d(self.cv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x,dim=1)
```


nChannel nHidden

Without Max Pooling

stride=1

stride=2 strid

stride=3

Accuracy	Train	Test
Conv 5x5, stride 1 Max pool 2x3	99.58	98.77
Conv 5x5, stride 2	99.42	98.31
Conv 5x5, stride 1 Conv 3x3, stride 2	99.38	98.57

PyTorch Translation (2)

class ConvNet(nn.Module):

```
def __init__(nChannel=10,nHidden=50):
    self.cv1 = nn.Conv2d(1, nChannel,kernel_size=5,stride=2)
    self.cv2 = nn.Conv2d(nChannel,20,kernel_size=5,stride=2)
    self.fc1 = nn.Linear(320, nHidden)
    self.fc2 = nn.Linear(nHidden,10)
```

def forward(self,x):

- x = F.relu(self.cv2(x))
- x = x.view(-1, 320)
- x = F.relu(self.fc1(x))

$$x = self.fc2(x)$$

return F.log_softmax(x,dim=1)

nChannel nHidden

MNIST

- The network takes as input 28x28 images represented as 784D vectors.
- The output is a 10D vector giving the probability of the image representing any of the 10 digits.
- There are 50'000 training pairs of images and the corresponding label, 10'000 validation pairs, and 5'000 testing pairs.

Lenet (1989-1999)

EPFL

Lenet Results

Given the appropriate architecture, the CNN outperforms the other approaches, whereas the MLP did not.

Lenet5 (1992)

- Worked beautifully on MNIST.
- Very few people believed it would scale up.

AlexNet (2012)

Task: Image classification

Training images: Large Scale Visual Recognition Challenge 2010 Training time: 2 weeks on 2 GPUs

> Major Breakthrough: Training large networks has now been shown to be practical!!

AlexNet Results

mite container ship leopard motor scooter container ship leopard mite motor scooter jaguar black widow lifeboat go-kart amphibian moped cockroach cheetah tick fireboat bumper car snow leopard drilling platform golfcart Egyptian cat starfish Madagascar cat grille mushroom cherry squirrel monkey convertible agaric dalmatian grille grape spider monkey mushroom pickup jelly fungus elderberry titi beach wagon gill fungus ffordshire bullterrier indri fire engine dead-man's-fingers howler monkey currant

EPFL

ImageNet Large Scale Visual Recognition Challenge Accuracy

- At the 2012 ImageNet Large Scale Visual Recognition Challenge, AlexNet achieved a top-5 error of 15.3%, more than 10.8% lower than the runner up.
- Since 2015, networks outperform humans on this task.

Krizhevsky, NIPS'12

Feature Maps

First convolutional layer

er Second convolutional layer

- Some of the convolutional masks are very similar to oriented Gaussian or Gabor filters.
- The trained neural nets compute oriented derivatives, which the brain is also **believed** to do.

Size and Depth Matter

VGG19, 3 weeks of training.

GoogleLeNet.

"It was demonstrated that the representation depth is beneficial for the classification accuracy, and that state-of-the-art performance on the ImageNet challenge dataset can be achieved using a conventional ConvNet architecture."

3

Hand Pose Estimation (2015)

Input: Depth image.

Output: 3D pose vector.

Deeper is Better

In general, the more ResNet layers, the better the results.

EPFL

He et al., CVPR'16

Image Classification Taxonomy

EPFL

Recurrent Auto Encoder

41

Hand Pose Estimation from Video (2019)

- This is considerably more difficult than estimating from range images.
- It requires a large training database.

EPEL

Connectomics

- Building the wiring diagram of the brain.
- Finding long range connections.

—> One step towards understanding how it works.

EPFL

Dendrites and Axons

EPFL

Fluorescent neurons in the adult mouse brain imaged imaged in vivo through a cranial window using a 2-photon microscope.

Cartography

The road centerlines are used to plot routes.

Before Machine Learning

Detect road centerlines

Find generic paths

Apply semantic filter

Boxology

After Machine Learning

Train a classifier to do this.

To train the classifier, we must associate a feature vector to each path and they all must be of the same dimension.

EPFL

Turetken et al., PAMI'16.

Histogram of Oriented Gradients

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024

EPFL

Histogram of Gradient Deviations

 $\Psi(\mathbf{x}) = \begin{cases} \text{angle}(\nabla I(\mathbf{x}), \mathbf{N}(\mathbf{x})), \text{ if } \|\mathbf{x} - \mathcal{C}(s_{\mathbf{x}})\| > \varepsilon \\ \text{angle}(\nabla I(\mathbf{x}), \mathbf{\Pi}(\mathbf{x})), \text{ otherwise,} \end{cases}$

—> One histogram per radius interval plus four geometric features (curvature, tortuosity,).

Roads

Brainbow Images

Blood Vessels

Deep Learning Tsunami

AlexNet 2012

The end of computer science as we know it

or

An opportunity to revisit and improve the pipeline:

- Reformulate individual components in terms of CNNs.
- Make them consistent with each other.

EPFL

Before Deep Learning

- Machine learning enables the **same** algorithm to work in many different contexts but requires hand-designed features.
- However, computing the tubularity and classifying the paths are closely related tasks. They should not be treated separately.

—> Can we use Deep Learning to account for this? Turetken et al., PAMI'16

ResNet to U-Net

ResNet block

EPFL

Reminder: Downsampling by Pooling

hidden neurons (output from feature map)

000000000000000000000000000000000000000	max-pooling units
00000000000000000000000000000000000000	000000000000
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	000000000000
	000000000000
	0000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	

- Reduces the number of inputs by replacing all activations in a neighborhood by a single one.
- Can it be reversed?

EPFL

Upsampling by Duplication

i1	i2
i3	i4

i1	i1	i2
i1	i1	i2
i3	i3	i4

Upsampling by Interpolation

i1	i2
i3	i4

i1	i5=(i1+i2)/2	i2
i6=(i1+i3)/2	i9=(i1+i2+i3+i4)/4	i7=(i2+i4)/2
i3	i8=(i3+i4)/2	i4

Upsampling by Bilinear Interpolation

EPFL

	I10=(i1 + i2 + . + .) / 4	
i1	i11=(i10+i1+i2+i9)/4	i2
	i9=(i1+i2+i3+i4)/4	
i3		i4

Upsampling by Transposed 1D Convolution

F. Fleuret. EE-559 – Deep learning

- The summations are performed in the vertical direction instead of the horizontal one.
- If we wrote this in terms of a fully connected layer, this would amount to transposing the weight matrix.
- Can be extended to 2D layers.

Estimating the Tubularity

Train Encoder-decoder U-Net architecture using binary cross-entropy

Minimize

$$L_{BCE} = \frac{1}{N} \sum_{i=1}^{N} y_{i} log(\hat{y}_{i}) + (1 - y_{i}) log(\hat{y}_{i})$$

where

- $\hat{\mathbf{y}} = f_{\mathbf{w}}(\mathbf{x}),$
- **x** in an input image,
- **y** the corresponding ground truth.

Tubularity Map

Image

BCE Loss

Ground truth

Iterative Refinement

Use the same network to progressively refine the results keeping the number of parameters constant

EPFL

Before Deep Learning

Dual Use UNet

After Deep Learning

- 1.Compute a probability map.
- 2. Sample and connect the samples.
- 3. Assign a weight to the paths.
- 4. Retain the best paths.

Streets of Toronto

False negatives False positives

Dendrites and Axons

- Deep learning allows the **same** algorithm to work in different contexts.
- The implementation is informed by earlier approaches.

EPFL

Accounting for Topology

Image

EPFL

Ground truth

—> Add a term in the loss function that penalizes the existence of a path between A and B.

1998 - 2038

It is difficult to make predictions, especially about the future. Sometimes attributed to Niels Bohr.

Alpha Go

EPF

- Uses Deep Nets to find the most promising locations to focus on.
- Performs Tree based search when possible.
- Relies on reinforcement learning and other ML techniques to train.
- —> Beat the world champion in 2017.

