Linear Dimensionality Reduction

Pascal Fua IC-CVLab

Reminder: Cover's Theorem

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in a low-dimensional space, provided that the space is not densely populated.

Geometrical and Statistical properties of systems of linear inequalities with applications, 1965

Example: MNIST Again

- The MNIST images are 28x28 arrays.
- They are **not** uniformly distributed in R⁷⁸⁴.
- In fact they exist on a low dimensional manifold.

Example: Golf Swings

The skeleton used to describe the body pose has 51 degrees of freedom.

EPFL

Example: Golf Latent Space

Latent Space (X)

Pose Space (Y)

- The golf swings exist on a 2D manifold in R⁵¹.
- There is a mapping from a 2D space to this manifold.
- This can be said of MNIST images, golf swings, and many other things.

-> This is what makes many ML techniques viable. Urtasun et al., CVPR'05

Dimensionality Reduction

It involves:

- discovering the data manifold,
- finding a low-dimensional representation of the data,
- some loss of information and hopefully noise reduction.

Formalization

Our goal is to find a mapping $\mathbf{y}_i = f(\mathbf{x}_i)$

- $\mathbf{x}_i \in \mathbb{R}^D$: High-dimensional data sample
- $\mathbf{y}_i \in \mathbb{R}^d$: Low-dimensional representation

How about a linear one $\mathbf{y}_i = \mathbf{W}^T \mathbf{x}_i$?

EPFL We will talk about Non-Linear ones next week.

Principal Component Analysis (PCA)

Given N samples $\{\mathbf{x}_i\}$, PCA yields a projection of the form

$$\mathbf{y}_i = \mathbf{W}^T (\mathbf{x}_i - \bar{\mathbf{x}}) \quad \text{s.t.} \quad \mathbf{W}^T \mathbf{W} = \mathbf{I}_d$$
$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}_i$$

What do we want this projection to achieve?

PCA Objective

- We want to keep most of the "important" signal while removing the noise.
- This can be achieved by finding directions in which there is a large variance, that is, for the j^{th} output dimension, we want to maximize

$$\operatorname{var}(\{y_i^{(j)}\}) = \frac{1}{N} \sum_{i=1}^{N} (y_i^{(j)} - \bar{y}^{(j)})^2,$$

where $\bar{y}^{(j)}$ is the mean of the dimension of the j^{th} data point after **EPFL** projection.

Let us begin with the projection into a 1D space:

- We use a *D*-dimensional vector \mathbf{w}_1 , s.t., $\mathbf{w}_1^T \mathbf{w}_1 = 1$, instead of a matrix $\mathbf{W} \in \mathbb{R}^{D \times d}$.
- In this case, the mean of the data after projection is

$$\bar{\mathbf{y}} = \frac{1}{N} \sum_{i=1}^{N} y_i$$
$$= \frac{1}{N} \sum_{i=1}^{N} \mathbf{w}_1^T \mathbf{x}_i$$
$$= \mathbf{w}_1^T \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i \right)$$
$$= \mathbf{w}_1^T \bar{\mathbf{x}}$$

Therefore, the variance of the data after projection is

$$\operatorname{var}(\{y_i\}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2 = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{w}_1^T \mathbf{x}_i - \mathbf{w}_1^T \bar{\mathbf{x}})^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{w}_1^T (\mathbf{x}_i - \bar{\mathbf{x}}) \right)^2 = \frac{1}{N} \sum_{i=1}^{N} \mathbf{w}_1^T (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T \mathbf{w}_1$$
$$= \mathbf{w}_1^T \left(\frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T \right) \mathbf{w}_1 = \mathbf{w}_1^T \mathbf{C} \mathbf{w}_1$$

where **C** is the input data covariance matrix

$$\mathbf{C} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

EPFL

- Ultimately, we seek to solve $\max_{\mathbf{w}_1} \mathbf{w}_1^T \mathbf{C} \mathbf{w}_1 \text{ subject to } \mathbf{w}_1^T \mathbf{w}_1 = 1.$
- As we saw in previous lectures, we can write the Lagrangian of this problem

$$L(\mathbf{w}_1, \lambda_1) = \mathbf{w}_1^T \mathbf{C} \mathbf{w}_1 + \lambda_1 (1 - \mathbf{w}_1^T \mathbf{w}_1)$$
$$\frac{\partial L}{\partial \mathbf{w}_1} = 2(\mathbf{C} \mathbf{w}_1 - \lambda_1 \mathbf{w}_1)$$

- Setting the gradient of the Lagrangian to 0 yields $\mathbf{C}\mathbf{w}_1 = \lambda_1 \mathbf{w}_1$.
- This is the definition of an eigenvector.
- So \mathbf{w}_1 must be an eigenvector of \mathbf{C} , with eigenvalue λ_1 .
- But which eigenvector?

• Multiplying both sides of the eigenvector equation from the left by \mathbf{w}_1^T yields

$$\mathbf{w}_1^T \mathbf{C} \mathbf{w}_1 = \lambda_1 \mathbf{w}_1^T \mathbf{w}_1 = \lambda_1$$

because of \mathbf{w}_1 must be a unit vector.

- The resulting term on the left hand side is the variance of the projected data.
- As we seek to maximize it, we should take w_1 to be the eigenvector corresponding to the largest eigenvalue λ_1 .

Dealing with More that 1D projections

- To obtain an output representation that is more than 1D, i.e., d > 1, we can iterate:
 - The second projection vector \mathbf{w}_2 corresponds to the eigenvector of \mathbf{C} with the second largest eigenvalue
 - → The third vector \mathbf{w}_3 to the eigenvector with the third largest eigenvalue →...
- The matrix **W** is obtained by concatenating the resulting vectors

 $\mathbf{W} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_d \end{bmatrix} \in \mathbb{R}^{D \times d}$

• This is guaranteed to satisfy the constraint $\mathbf{W}^T \mathbf{W} = \mathbf{I}_d$ because the eigenvectors of a matrix are orthogonal and of norm 1.

PCA without Dimensionality Reduction

- In the limit, one can use all dimensions, i.e., set d = D
 - -There is therefore no reduction of dimensionality
 - -In 3D, you can think of this as a rotation of the data
 - -This incurs no loss of information

X

-The d = D dimensions in the new space are uncorrelated

У

PCA without Loss of Information

Another option is to keep all the eigenvectors corresponding to non-zero eigenvalues:

- This means that the data is truly low-dimensional.
- The resulting $\{\mathbf{y}_i\}$ are lower dimensional (d < D) without loss of information.
- This happens trivially when there are fewer samples than dimensions (N < D).

PCA with Loss of Information

- In practice, one typically truncates the eigenvalues so as to discard some that are non-zero.
 - -This can be achieved by aiming to retain a pre-defined percentage of the data variance, measured as the sum of eigenvalues.
 - –For example, to retain at least 90% of the variance, one can search for d such that

$$\sum_{j=1}^d \lambda_j \ge 0.9 \cdot \sum_{k=1}^D \lambda_k \,,$$

assuming the eigenvalues to be sorted in decreasing order.

• The resulting $\{\mathbf{y}_i\}$ have an even lower dimension.

Classifying Irises

- UCI Iris dataset:
 - 3 different types of irises
 - 4 attributes
 - ✓ petal length
 - \checkmark petal width
 - \checkmark sepal length
 - \checkmark sepal width
- 4 attributes means D = 4, so d is at most 4.

Cumulative Variance

EPFL Cumulative variance explained by the principal components

Medical Application

- The Cancer Genome Atlas breast cancer RNA-Seq dataset:
 - –Normal tissue vs primary tumor:
 - -20532 features, that is genes for which an expression is measured.
 - -204 samples.
- 20532 features means D = 20532, so d is at most 20532.
- However, because we only have N = 204 samples, d is at most 204.

https://medium.com/cascade-bio-blog/creating-visualizations-to-better-understand-your-data-and-models-part-1-a51e7e5af9c0

Cumulative Variance

EPFL

Cumulative variance explained by the principal components

Medical Application

Samples of the Cancer Genome Atlas breast cancer RNA-Seq dataset projected in 2D.

—> Relatively easy to classify.

PCA: Mapping

- PCA not only reduces the dimensionality of the original data. It provides a continuous mapping from the low-dimensional space to the high-dimensional one
- That is, for any $\mathbf{y} \in \mathbb{R}^d$, we can compute a point in the high-dimensional space as

$$\hat{\mathbf{x}} = \bar{\mathbf{x}} + \mathbf{W}\mathbf{y}$$

= $\bar{\mathbf{x}} + \sum \alpha_i \mathbf{w}_i$ with $\mathbf{y} = [\alpha_1, ..., \alpha_d]^T$

• This mapping constrains $\hat{\mathbf{x}}$ to lie in a subspace, and thus provides a form of regularization.

Toy Example

• Original data

•New point (green star)

Toy Example

• Original data

EPFL

•New point (green star)

Optimal Linear Mapping

- This mapping incurs some loss of information.
- \cdot However, the corresponding rectangular matrix W is the orthogonal matrix that minimizes the reconstruction error

$$e = \|\hat{\mathbf{x}} - \mathbf{x}\|^2$$

where

$$\hat{\mathbf{x}} = \bar{\mathbf{x}} + \mathbf{W}\mathbf{y} = \bar{\mathbf{x}} + \mathbf{W}\mathbf{W}^T(\mathbf{x} - \bar{\mathbf{x}})$$

EigenFaces

W

EPFI

- The x are vectors representing the images. The u are the eigenvectors of the covariance matrix.
- Exact reconstruction:

$$\mathbf{x} = \bar{x} + \sum_{n=1}^{N^2} \alpha_i \mathbf{w}_i$$

• Approximate reconstruction:

$$\mathbf{x} = \bar{x} + \sum_{n=1}^{M} \alpha_i \mathbf{w}_i \text{ with } M \ll N^2$$

Turk and Pentland, CVPR'91 2

Reconstruction Using Eigenfaces

X

Project and reconstruct left image to produce the right one.

3D Face Modeling

EPFL

Blanz & Vetter, SIGGRAPH'99

30

3D Face Modeling

Blanz & Vetter, SIGGRAPH'99

20 Years Later: Deep Fakes

- Even better results using deep networks.
- But, much more complicated nonlinear technique.
- We will talk return to this in the next lecture.

https://neurohive.io/en/news/deepfake-videos-gan-sythesizes-a-video-from-a-single-photo/

A Problem for EigenFaces

EPEI

- Two different faces seen under very different illumination condition.
- The first eigenvector is very likely to capture differences in illumination.

—> Classes are not well
separated.

Dimensionality Reduction for Classification

PCA is unsupervised and thus may not always preserve category information.

x y 3D data from 2 classes (colors)

How about making use of class labels during DR?

Fisher Linear Discriminant Analysis (LDA)

Ideally, we want:

- the samples from the same class to be clustered
- the different classes to be separated

Clustering Samples from the Same Class

- Mathematically, this means that we want a low variance within each class after projection
- For a 1D projection, encoded via a vector \mathbf{w}_1 , and C classes, this can be expressed as aiming to minimize

$$E_W(\mathbf{w}_1) = \sum_{c=1}^{C} \sum_{i \in c} (y_i - \nu_c)^2$$

where ν_c is the mean of the samples in class *c* after projection, and $i \in c$ indicates that sample *i* belongs to class *c*.

Note that both the y_i and ν_c depend on \mathbf{w}_1 .

Clustering Samples from the Same Class

- As in the PCA case, the variance after projection is equal to the projection of the covariance matrix
- This lets us rewrite the previous objective function as

$$E_W(\mathbf{w}_1) = \mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1,$$

where

$$\mathbf{S}_W = \sum_{c=1}^C \sum_{i \in c} (\mathbf{x}_i - \mu_c) (\mathbf{x}_i - \mu_c)^T,$$

and μ_c is the mean of the data in class *c* before projection.

• S_W is referred to as the within-class scatter matrix.

Separating the Different Classes

- In addition to clustering the samples according to the classes, we want to separate the different clusters
- This can be achieved by pushing the means of the clusters away from each other.
- Mathematically, this means maximizing

$$E_B(\mathbf{w}_1) = \sum_{c=1}^C N_c (\nu_c - \bar{y})^2,$$

where ν_c is defined as before, \bar{y} is the mean of all samples after projection, and N_c is the number of samples in class c.

Separating the Different Classes

• Following the same reasoning as before, this can be re-written as

$$E_B(\mathbf{w}_1) = \mathbf{w}_1^T \mathbf{S}_B \mathbf{w}_1,$$

where

$$\mathbf{S}_B = \sum_{c=1}^C N_c (\mu_c - \bar{\mathbf{x}}) (\mu_c - \bar{\mathbf{x}})^T,$$

 $\bar{\mathbf{x}}$ is the mean of all the samples, and the $\{\mu_c\}$ are class-specific means.

• S_B is referred to as the between-class scatter matrix

Fisher LDA in Dimension 1

- We want to simultaneously
 - minimize $E_W(\mathbf{w}_1)$
 - maximize $E_B(\mathbf{w}_1)$
- This can be achieved by maximizing

$$J(\mathbf{w}_1) = \frac{E_B(\mathbf{w}_1)}{E_W(\mathbf{w}_1)} = \frac{\mathbf{w}_1^T \mathbf{S}_B \mathbf{w}_1}{\mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1},$$

because minimizing a function $f(\cdot)$ can be done by maximizing $1/f(\cdot)$, in general.

Fisher LDA in Dimension 1

• The previous objective function is invariant to scaling:

 $J(\alpha \mathbf{w}_1) = J(\mathbf{w}_1)$

• So we can fix the scale by constraining \mathbf{w}_1 to be such that $\mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1 = 1$.

—> Fisher LDA formulation

$$\max_{\mathbf{w}_1} \mathbf{w}_1^T \mathbf{S}_B \mathbf{w}_1 \text{ subject to } \mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1 = 1.$$

Fisher LDA in Dimension 1

- To solve this, we again rely on the Lagrangian, written as $L(\mathbf{w}_1, \lambda_1) = \mathbf{w}_1^T \mathbf{S}_B \mathbf{w}_1 + \lambda_1 (1 - \mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1).$
- Zeroing out the gradient of $L(\cdot)$ w.r.t. \mathbf{w}_1 yields

$$\mathbf{S}_B \mathbf{w}_1 = \lambda_1 \mathbf{S}_W \mathbf{w}_1.$$

- This implies that \mathbf{w}_1 must be the solution to a generalized eigenvector problem.
- Left-multiplying both sides by \mathbf{w}_1^T and dividing by $\mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1$ tells us that \mathbf{w}_1 should again be the eigenvector with largest eigenvalue.

Fisher LDA in Dimension d > 1

- To project the data to more than a single dimension, we can follow an iterative strategy similar to the PCA one.
- Ultimately, this consists in taking the d eigenvectors with largest eigenvalues.
- It can be shown that S_B has rank at most C 1.
- Therefore, we can project the data only to at most C 1. dimensions
- The remaining eigenvalues will all be 0, and thus carry no information.

PCA vs LDA

- PCA : Maximize projected variance.
- LDA : Maximise between class variance and minimize within class variance.

Fisher LDA on MNIST

—> It only takes relatively low-dimensional spaces to yield decent clusters!

EPFL

EigenFaces vs FisherFaces

- Consider a dataset of face images:
 - 2 different expressions.
 - several illumination conditions.

- One can apply either PCA or LDA to these images
 - The resulting eigenvectors can also be thought of as images.
 - They are called eigenfaces for PCA and fisherfaces for LDA.

EigenFaces vs FisherFaces

EigenFaces

FisherFaces

- The EigenFaces contain information about the illumination and yield the best reconstructions.
- The FisherFaces discard the illumination information and are thus more useful for classification.

Swets & Weng, PAMI'96

EPFL

Linear vs NonLinear

- We could get better classification results with non-linear classifier.
- Is it also true of dimensionality reduction?

—> We will talk about this next week.

