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N: Dimension of the space

I
Y
I

Reminder: Cover’'s Theorem

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to
be linearly separable than in a low-dimensional space, provided that the space is not densely populated.

Geometrical and Statistical properties of systems of linear inequalities with applications,1965
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e ML shouldn’t work. P,

L e Yet it does. y A
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Example: MNIST Again

e The MNIST images are 28x28 arrays.
e They are not uniformly distributed in R784,
e In fact they exist on a low dimensional manifold.
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Example: Golf Swings

The skeleton used
to describe the body
pose has 51 degrees
of freedom.

Urtasun et al. , CVPR’05 A
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Example: Golf Latent Space
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Latent Space (X) Pose Space (Y)
e The golf swings exist on a 2D manifold in R51,
e There is @ mapping from a 2D space to this manifold.
e This can be said of MNIST images, golf swings, and
many other things.

—> This is what makes many ML techniques viable. 5

=Pr-L Urtasun et al. , CVPR’05




Dimensionality Reduction

It involves:
e discovering the data manifold,
e finding a low-dimensional representation of the data,
e some loss of information and hopefully noise reduction.

DR
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Formalization

Our goal is to find a mapping y, = f(x,)

e x. € R”: High-dimensional data sample
e y. € R% Low-dimensional representation

How about a linear one y, = W'x.?

=pr=; We will talk about Non-Linear ones next week. A
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Principal Component Analysis (PCA)

Given N samples {x.}, PCA yields a projection of the form

y; = WT(XZ- — )_() S.t. WTW = Id

1 &
X:Ni:ZIXi

What do we want this projection to achieve?

Bishop, Chap. 12.1 A
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PCA Objective

* We want to keep most of the “important” signal while removing
the noise.

* This can be achieved by finding directions in which there 1s a

large variance, that is, for the /" output dimension, we want to
maximize

| | & | |
D1y — (J) _ 52
var({v. = E . ,
({yl D Y, ~ (yl y’)

where /) is the mean of the dimension of the j™ data point after
=EPFL projection. A
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Variance Maximization

Let us begin with the projection into a 1D space:

« We use a D-dimensional vector wy, s.t., WlTwl = 1, instead of

a matrix W € RP*4,

* In this case, the mean of the data after projection 1s
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Variance Maximization

Therefore, the variance of the data after projection 1s

1 Al o) 1 < T T o\2
var({y;}) =Ni=21(yi—y) = Nizzl(wlxi_wlx)
1 & 1w
= v & (Wi = 0)7 = 5 2wl = R0 = 0w,
i=1 i=1

1 & _ _
=w, (N Z (x; — X)(X; — X)T> w, =w Cw,
i=1
where C is the input data covariance matrix

1 &
C :Ni:ZI(Xi_X)(Xi_X)T
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Variance Maximization

« Ultimately, we seek to solve

max w; Cw, subject to w;w, = 1.

Wi
* As we saw 1n previous lectures, we can write
the Lagrangian of this problem

L(Wl’ﬂ‘l) — W{CWl + /11(1 — W{Wl)
oL

—_— — 2(CW1 — /11W1)
awl




Variance Maximization

Setting the gradient of the Lagrangian to 0
Yields CWl — /11W1.

This 1s the definition of an eigenvector.

So w; must be an eigenvector of C, with
eigenvalue 4.

But which eigenvector?




Variance maximization

« Multiplying both sides of the eigenvector equation from
the left by WIT yields

T _ Tw. —
w,Cw, = Lywiw; = 4
because of wymust be a unit vector.

» The resulting term on the left hand side 1s the variance of
the projected data.

- As we seek to maximize 1t, we should take w; to be the
eigenvector corresponding to the largest eigenvalue 4,.

..
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Dealing with More that 1D projections

To obtain an output representation that is more than 1D, i.e., d > 1, we can
1terate:

=The second projection vector w, corresponds to the eigenvector of C
with the second largest eigenvalue

= The third vector w; to the eigenvector with the third largest eigenvalue
- ...

The matrix W is obtained by concatenating the resulting vectors
W = [Wl W, oo Wd] = RDxd

This is guaranteed to satisfy the constraint W/W =1, because the
eigenvectors of a matrix are orthogonal and of norm 1.
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PCA without Dimensionality Reduction

* In the limit, one can use all dimensions, 1.e., setd = D
—There 1s therefore no reduction of dimensionality
—In 3D, you can think of this as a rotation of the data

—This 1ncurs no loss of information
—The d = D dimensions in the new space are uncorrelated
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PCA without Loss of Information

Another option 1s to keep all the eigenvectors corresponding
to non-zero eigenvalues:

* This means that the data 1s truly low-dimensional.
« The resulting {y;} are lower dimensional (d < D)
without loss of information.

* This happens trivially when there are fewer samples
than dimensions (N < D).
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PCA with Loss of Information

 In practice, one typically truncates the eigenvalues so as to discard
some that are non-zero.

—This can be achieved by aiming to retain a pre-defined percentage
of the data variance, measured as the sum of eigenvalues.

—For example, to retain at least 90% of the variance, one can
search for d such that

d D
Y 4;>09-) A,
j=1 k=1

assuming the eigenvalues to be sorted in decreasing order.

- The resulting {y;} have an even lower dimension.
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Classifying Irises

» UCI Ir1s dataset:
— 3 different types of irises
— 4 attributes
v petal length
v petal width
v sepal length
v sepal width

4 attributes means D = 4, so d 1s at most 4.

E P F L http://archive.ics.uci.edu/ml/datasets/iris




Cumulative Variance

PCA Analysis
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cpr=l Cumulative variance explained by the principal components A



Medical Application

« The Cancer Genome Atlas breast cancer RNA-Seq
dataset:

—Normal tissue vs primary tumor:

—20532 features, that 1s genes for which an expression 1s
measured.

—204 samples.
e 20532 features means D = 20532, so d 1s at most 20532.

 However, because we only have N = 204 samples, d is at
most 204.

https://medium.com/cascade-bio-blog/creating-visualizations-to-better-understand-your-data-and-models-part-1-a51e7e5af9c0 I
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Cumulative Variance

PCA Analysis
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Medical Application

TCGA-BRCA RNA-Seq PCA
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Samples of the Cancer Genome Atlas breast cancer RNA-
Seq dataset projected in 2D.

—> Relatively easy to classify. !
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PCA: Mapping

» PCA not only reduces the dimensionality of the original

data. It provides a continuous mapping from the low-
dimensional space to the high-dimensional one

- That is, for any y € R%, we can compute a point in the

high-dimensional space as
X =X+ Wy
=X+ Z aw; withy = [ay, ..., aq]"

- This mapping constrains X to lie in a subspace, and thus

provides a form of regularization.

.
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Toy Example

e Original data
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Toy Example
e Original data
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Optimal Linear Mapping

”~
4 ° .o.’.

- This mapping incurs some loss of information.

- However, the corresponding rectangular matrix W is the
orthogonal matrix that minimizes the reconstruction error

e = ||x —x||?
where
Xx=Xx+Wy=x+WW/(x-X)
=Pr-L A




genFaces
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* The x are vectors representing the
images. The u are the eigenvectors
of the covariance matrix.

» Exact reconstruction:
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* Approximate reconstruction:

M
X=X+ ) aw,with M < N

n=1

W
=PrL Turk and Pentland, CVPR’91 A




Reconstruction Using Eigenfaces

Project and reconstruct left image to produce the right one.

=Pr-L



3D Face Modeling

Blanz & Vetter, SIGGRAPH’99 A



3D Face Modeling

Blanz & Vetter, SIGGRAPH’99



20 Years Later: Deep Fakes

Vi Even better results
using deep networks.

e But, much more
complicated non-
linear technique.

o We will talk return to
this in the next
lecture.
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Landmarks Generator Synthesized
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https://neurohive.io/en/news/deepfake-videos-gan-sythesizes-a-video-from-a-single-photo/ A
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A Problem for EigenFaces

o Two different faces seen under
very different illumination
condition.

e The first eigenvector is very
likely to capture differences in
illumination.

—> C(Classes are not well
separated.

-




Dimensionality Reduction for Classification

m

PCA is unsupervised and thus may not always preserve
category information.

3D data from 2 classes (colors)

How about making use of class labels during DR?




Fisher Linear Discriminant Analysis (

Ideally, we want:
« the samples from the same class to be clustered

« the different classes to be separated

LDA)

m
v
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r

Bishop, Chap. 4.1
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Clustering Samples from the Same Class

- Mathematically, this means that we want a low variance within
each class after projection

- For a 1D projection, encoded via a vector w,, and C classes, this
can be expressed as aiming to minimize

C
Ey(w) =Y Y (= 1)

c=1 iec

where v, 1s the mean of the samples 1n class ¢ after projection, and
| € c indicates that sample i belongs to class c.

Note that both the y; and v,. depend on w;.

PrL A
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Clustering Samples from the Same Class

- As 1n the PCA case, the variance after projection 1s equal to the
projection of the covariance matrix

- This lets us rewrite the previous objective function as
T
Ew(Wi) = Wi Sywy,
where

C
Sy =2 Y % — )X — ),

c=1 i€ec

and pu. 1s the mean of the data in class ¢ before projection.

- Sy 1s referred to as the within-class scatter matrix.
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Separating the Different Classes

- In addition to clustering the samples according to the classes, we
want to separate the different clusters

- This can be achieved by pushing the means of the clusters away
from each other.

- Mathematically, this means maximizing

C
Eg(W)) = ) N, — ),
c=1

where v, 1s defined as before, y 1s the mean of all samples after
projection, and N, 1s the number of samples 1n class c.

P
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Separating the Different Classes

* Following the same reasoning as before, this can be re-written as
Eg(w)) = W Spwy,
where
C
SB — Z Nc(/’lc — X)(MC — X)Ta
c=1

X 1s the mean of all the samples, and the {y_.} are class-specific
means.

- S 1s referred to as the between-class scatter matrix

8




Fisher LDA in Dimension 1

- We want to simultaneously
- minimize Ey (W)

- maximize Eg(w)

- This can be achieved by maximizing

E.(w,) w!S.w
Jowy) = B Wi9pW,

Ew(w)  W[Syw,’
because minimizing a function f( - ) can be done by maximizing
1/f( ), in general.

.
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Fisher LDA in Dimension 1

* The previous objective function is invariant to scaling:
Jaw,) = J(w,)
» So we can fix the scale by constraining w, to be such that

T _
w Syw, = 1.

—> Fisher LDA formulation

max wi S;w, subject to wi Sy,w; = 1.
Wi

41




Fisher LDA in Dimension 1

* To solve this, we again rely on the Lagrangian, written as

L(wy, ) = wiSpw; + 4, (1 — wiS,,w)).

- Zeroing out the gradient of L( - ) w.r.t. w, yields

SBW1 — /llszl.

» This implies that w;, must be the solution to a generalized
eigenvector problem.

- Left-multiplying both sides by WlT and dividing by WlTSWW1 tells
us that w, should again be the eigenvector with largest eigenvalue.

Pl'L
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Fisher LDA in Dimensiond > 1

» To project the data to more than a single dimension, we can follow an
iterative strategy similar to the PCA one.

- Ultimately, this consists in taking the d eigenvectors with largest
eigenvalues.

- It can be shown that Sz has rank at most C — 1.

- Therefore, we can project the data only to at most C — 1. dimensions

- The remaining eigenvalues will all be 0, and thus carry no
information.

.-
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PCA vs LDA

® PCA : Maximize projected variance.

® LDA : Maximise between class variance and minimize within
class variance.

Poor
discrimination

..

Good
discrimination
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Fisher LDA on MNIST

2D 3D

—> It only takes relatively low-dimensional spaces to yield decent

clusters!

=Pr-L




EigenFaces vs FisherFaces

 Consider a dataset of face images:
« 2 different expressions.
e several illumination conditions.

plexlill  plexLil2  plexli3  plex2ill  plex2,il2  plex2,il3

* One can apply either PCA or LDA to these images
* The resulting eigenvectors can also be thought of as images.
* They are called eigenfaces for PCA and fisherfaces for LDA.

E P F L Swets & Weng, PAMI’96 A



EigenFaces vs FisherFaces

FisherFaces

« The EigenFaces contain information about the illumination and
yield the best reconstructions.

e The FisherFaces discard the illumination information and are thus

more useful for classification.
EPFL Swets & Weng, PAMI’96 A



Linear vs NonLinear

e We could get better classification results
with non-linear classifier.

e [s it also true of dimensionality reduction?

—> We will talk about this next week.

.




