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Reminder: Cover’s Theorem
A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to 
be linearly separable than in a low-dimensional space, provided that the space is not densely populated.


Geometrical and Statistical properties of systems of linear inequalities with applications,1965

N : Dimension of space

p : Number of samples

C(p,N)

2p
: Percentage of separable partitions
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Operating range

• ML shouldn’t work.

• Yet it does. ?
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Example: MNIST Again

• The MNIST images are 28x28 arrays.

• They are not uniformly distributed in R784.

• In fact they exist on a low dimensional manifold. 
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Example: Golf Swings

………

The skeleton used 
to describe the body 
pose has 51 degrees 
of freedom. 

Urtasun et al. , CVPR’05



5

Example: Golf Latent Space

Urtasun et al. , CVPR’05
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Latent Space (X)

• The golf swings exist on a 2D manifold in R51.

• There is a mapping from a 2D space to this manifold.

• This can be said of MNIST images, golf swings, and 

many other things.


—> This is what makes many ML techniques viable. 
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Dimensionality Reduction

It involves:

• discovering the data manifold,

• finding a low-dimensional representation of the data,

• some loss of information and hopefully noise reduction.
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Formalization

• : High-dimensional data sample

• : Low-dimensional representation

xi ∈ ℝD

yi ∈ ℝd
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Our goal is to find a mapping yi = f(xi)

How about a linear one ?yi = WTxi

We will talk about Non-Linear ones next week.
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Principal Component Analysis (PCA)

Given  samples , PCA yields a projection of the formN {xi}

yi = WT(xi − x̄) WTW = Id

x̄ =
1
N

N

∑
i=1

xi

s.t.

What do we want this projection to achieve?

Bishop, Chap. 12.1
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PCA Objective

• We want to keep most of the “important” signal while removing 
the noise.


• This can be achieved by finding directions in which there is a 
large variance, that is, for the  output dimension, we want to 
maximize
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var({y( j)
i }) =

1
N

N

∑
i=1

(y( j)
i − ȳ( j))2,

where  is the mean of the dimension of the  data point after 
projection.

ȳ( j) jth
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Variance Maximization

Let us begin with the projection into a 1D space:

• We use a -dimensional vector , s.t., , instead of 

a matrix . 

• In this case, the mean of the data after projection is

D w1 wT
1 w1 = 1

W ∈ ℝD×d

ȳ =
1
N

N

∑
i=1

yi

=
1
N

N

∑
i=1

wT
1 xi

= wT
1 ( 1

N

N

∑
i=1

xi)
= wT

1 x̄
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Variance Maximization

Therefore, the variance of the data after projection is

var({yi}) =
1
N

N

∑
i=1

(yi − ȳ)2 =
1
N

N

∑
i=1

(wT
1 xi − wT

1 x̄)2

=
1
N

N

∑
i=1

(wT
1(xi − x̄))2 =

1
N

N

∑
i=1

wT
1(xi − x̄)(xi − x̄)Tw1

= wT
1 ( 1

N

N

∑
i=1

(xi − x̄)(xi − x̄)T) w1 = wT
1Cw1

where  is the input data covariance matrixC

C =
1
N

N

∑
i=1

(xi − x̄)(xi − x̄)T
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Variance Maximization

• Ultimately, we seek to solve

 subject to .


• As we saw in previous lectures, we can write 
the Lagrangian of this problem


.

max
w1

wT
1Cw1 wT

1w1 = 1

L(w1, λ1) = wT
1Cw1 + λ1(1 − wT

1w1)
∂L

∂w1
= 2(Cw1 − λ1w1)
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Variance Maximization

• Setting the gradient of the Lagrangian to 0 
yields .


• This is the definition of an eigenvector.

• So  must be an eigenvector of , with 

eigenvalue .

• But which eigenvector? 

Cw1 = λ1w1

w1 C
λ1
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Variance maximization

• Multiplying both sides of the eigenvector equation from 
the left by  yields


 


    because of must be a unit vector.

• The resulting term on the left hand side is the variance of 

the projected data.

• As we seek to maximize it, we should take  to be the 

eigenvector corresponding to the largest eigenvalue .

wT
1

wT
1Cw1 = λ1wT

1w1 = λ1

w1

w1
λ1
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Dealing with More that 1D projections

• To obtain an output representation that is more than 1D, i.e., , we can 
iterate:

➡The second projection vector  corresponds to the eigenvector of  

with the second largest eigenvalue

➡ The third vector  to the eigenvector with the third largest eigenvalue

➡…


• The matrix  is obtained by concatenating the resulting vectors




• This is guaranteed to satisfy the constraint  because the 
eigenvectors of a matrix are orthogonal and of norm 1.

d > 1

w2 C

w3

W
W = [w1 w2 ⋯ wd] ∈ ℝD×d

WTW = Id
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PCA without Dimensionality Reduction

• In the limit, one can use all dimensions, i.e., set 

–There is therefore no reduction of dimensionality

–In 3D, you can think of this as a rotation of the data

–This incurs no loss of information

–The  dimensions in the new space are uncorrelated

d = D

d = D

x y
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PCA without Loss of Information
Another option is to keep all the eigenvectors corresponding  
to non-zero eigenvalues:


• This means that the data is truly low-dimensional. 

• The resulting  are lower dimensional ( ) 

without loss of information. 

• This happens trivially when there are fewer samples 

than dimensions ( ).

{yi} d < D

N < D

x y
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 PCA with Loss of Information

• In practice, one typically truncates the eigenvalues so as to discard 
some that are non-zero.


–This can be achieved by aiming to retain a pre-defined percentage 
of the data variance, measured as the sum of eigenvalues.


–For example, to retain at least 90% of the variance, one can 
search for  such that


 ,


        assuming the eigenvalues to be sorted in decreasing order.

• The resulting  have an even lower dimension.

d
d

∑
j=1

λj ≥ 0.9 ⋅
D

∑
k=1

λk

{yi}
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Classifying Irises

• UCI Iris dataset:

– 3 different types of irises 

– 4 attributes 

✓ petal length

✓ petal width

✓ sepal length

✓sepal width


• 4 attributes means , so  is at most 4.D = 4 d

http://archive.ics.uci.edu/ml/datasets/iris
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Cumulative Variance

Cumulative variance explained by the principal components
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Medical Application

• The Cancer Genome Atlas breast cancer RNA-Seq 
dataset:

–Normal tissue vs primary tumor: 

–20532 features, that is genes for which an expression is 

measured.

–204 samples.


• 20532 features means , so  is at most 20532.

• However, because we only have  samples,  is at 

most 204.

D = 20532 d
N = 204 d

https://medium.com/cascade-bio-blog/creating-visualizations-to-better-understand-your-data-and-models-part-1-a51e7e5af9c0
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Cumulative Variance

Cumulative variance explained by the principal components
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Samples of the  Cancer Genome Atlas breast cancer RNA-
Seq dataset projected in 2D.


—> Relatively easy to classify. 

y1

y2

 

Medical Application



24

PCA: Mapping

• PCA not only reduces the dimensionality of the original 
data. It provides a continuous mapping from the low-
dimensional space to the high-dimensional one


• That is, for any , we can compute a point in the 
high-dimensional space as





• This mapping constrains  to lie in a subspace, and thus 
provides a form of regularization.

y ∈ ℝd

x̂ = x̄ + Wy
= x̄ + ∑ αiwi with y = [α1, …, αd]T

x̂
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Toy Example

•New point (green star)

x

PCA

Mapping

y = WT(x − x̄)

y x̂ = x̄+Wy
= x̄ + αiwi

• Original data
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Toy Example

x

PCA

y = WT(x − x̄)

y x̂ = x̄+Wy
= x̄ + αiwi

• Original data

Mapping

•New point (green star)
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Optimal Linear Mapping

• This mapping incurs some loss of information. 

• However, the corresponding rectangular matrix  is the 

orthogonal matrix that minimizes the reconstruction error




where 


W

e = ∥x̂ − x∥2

x̂ = x̄ + Wy = x̄ + WWT(x − x̄)

x

PCA

y = WT(x − x̄)
x̂ = x̄+Wy

Mapping
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EigenFaces

• The x are vectors representing the 
images.The u are the eigenvectors 
of the covariance matrix. 


• Exact reconstruction:





• Approximate reconstruction:


x = x̄ +
N2

∑
n=1

αiwi

x = x̄ +
M

∑
n=1

αiwi with M ≪ N2

x

w
Turk and Pentland, CVPR’91
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Reconstruction Using Eigenfaces

Project and reconstruct left image to produce the right one. 

x



30

3D Face Modeling

Blanz & Vetter, SIGGRAPH’99
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3D Face Modeling

Blanz & Vetter, SIGGRAPH’99
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20 Years Later: Deep Fakes

https://neurohive.io/en/news/deepfake-videos-gan-sythesizes-a-video-from-a-single-photo/

• Even better results 
using deep networks.


• B u t , much mo re 
compl icated non-
linear technique. 


• We will talk return to 
t h i s i n t he nex t 
lecture.  
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A Problem for EigenFaces674 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 14.15 Images from the Harvard database used by Belhumeur, Hespanha, and Krieg-
man (1997) c⇥ 1997 IEEE. Note the wide range of illumination variation, which can be more
dramatic than inter-personal variations.

One of the biggest advantages of using eigenfaces is that they reduce the comparison
of a new face image x to a prototype (training) face image xk (one of the colored xs in
Figure 14.14) from a P -dimensional difference in pixel space to an M -dimensional difference
in face space,

⇤x� xk⇤ = ⇤a� ak⇤, (14.16)

where a = UT (x � m) (14.11) involves computing a dot product between the signed
difference-from-mean image (x �m) and each of the eigenfaces ui. Once again, however,
this Euclidean distance ignores the fact that we have more information about face likelihoods
available in the distribution of training images.

Consider the set of images of one person taken under a wide range of illuminations shown
in Figure 14.15. As you can see, the intrapersonal variability within these images is much
greater than the typical extrapersonal variability between any two people taken under the
same illumination. Regular PCA analysis fails to distinguish between these two sources of
variability and may, in fact, devote most of its principal components to modeling the intrap-
ersonal variability.

If we are going to approximate faces by a linear subspace, it is more useful to have a
space that discriminates between different classes (people) and is less sensitive to within-class
variations (Belhumeur, Hespanha, and Kriegman 1997). Consider the three classes shown as
different colors in Figure 14.16. As you can see, the distributions within a class (indicated
by the tilted colored axes) are elongated and tilted with respect to the main face space PCA,
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u1

• Two different faces seen under 
very different i l lumination 
condition.  


• The first eigenvector is very 
likely to capture differences in 
illumination. 


—> C l a s se s a re no t we l l 
separated. 
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Dimensionality Reduction for Classification

PCA is unsupervised and thus may not always preserve 
category information.
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Fisher Linear Discriminant Analysis (LDA)

Bishop, Chap. 4.1.6

Ideally, we want:

• the samples from the same class to be clustered


• the different classes to be separated
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Clustering Samples from the Same Class

• Mathematically, this means that we want a low variance within 
each class after projection


• For a 1D projection, encoded via a vector , and  classes, this 
can be expressed as aiming to minimize

w1 C

EW(w1) =
C

∑
c=1

∑
i∈c

(yi − νc)2

where  is the mean of the samples in class  after projection, and 
 indicates that sample  belongs to class .

νc c
i ∈ c i c

Note that both the  and  depend on .yi νc w1
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• As in the PCA case, the variance after projection is equal to the 
projection of the covariance matrix


• This lets us rewrite the previous objective function as

,


where


,


and  is the mean of the data in class  before projection.


•  is referred to as the within-class scatter matrix.

EW(w1) = wT
1SWw1

SW =
C

∑
c=1

∑
i∈c

(xi − μc)(xi − μc)T

μc c
SW

Clustering Samples from the Same Class
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Separating the Different Classes

• In addition to clustering the samples according to the classes, we 
want to separate the different clusters


• This can be achieved by pushing the means of the clusters away 
from each other.


• Mathematically, this means maximizing


,


where  is defined as before,  is the mean of all samples after 
projection, and  is the number of samples in class .

EB(w1) =
C

∑
c=1

Nc(νc − ȳ)2

νc ȳ
Nc c
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• Following the same reasoning as before, this can be re-written as

,


where 


,


 is the mean of all the samples, and the  are class-specific 
means.


•  is referred to as the between-class scatter matrix

EB(w1) = wT
1SBw1

SB =
C

∑
c=1

Nc(μc − x̄)(μc − x̄)T

x̄ {μc}

SB

Separating the Different Classes
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Fisher LDA in Dimension 1

• We want to simultaneously

• minimize 


• maximize 

• This can be achieved by maximizing 


,


because minimizing a function  can be done by maximizing 
, in general. 

EW(w1)
EB(w1)

J(w1) =
EB(w1)
EW(w1)

=
wT

1SBw1

wT
1SWw1

f( ⋅ )
1/f( ⋅ )
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Fisher LDA in Dimension 1

• The previous objective function is invariant to scaling:




• So we can fix the scale by constraining  to be such that

.


—> Fisher LDA formulation

 subject to .

J(αw1) = J(w1)
w1

wT
1SWw1 = 1

max
w1

wT
1SBw1 wT

1SWw1 = 1

41
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• To solve this, we again rely on the Lagrangian, written as

.


• Zeroing out the gradient of  w.r.t.  yields


.


• This implies that  must be the solution to a generalized 
eigenvector problem.


• Left-multiplying both sides by  and dividing by  tells 
us that  should again be the eigenvector with largest eigenvalue.

L(w1, λ1) = wT
1SBw1 + λ1(1 − wT

1SWw1)

L( ⋅ ) w1

SBw1 = λ1SWw1

w1

wT
1 wT

1SWw1
w1

Fisher LDA in Dimension 1
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• To project the data to more than a single dimension, we can follow an 
iterative strategy similar to the PCA one.


• Ultimately, this consists in taking the  eigenvectors with largest 
eigenvalues.


• It can be shown that  has rank at most .

• Therefore, we can project the data only to at most . dimensions

• The remaining eigenvalues will all be 0, and thus carry no 

information.

d

SB C − 1
C − 1

Fisher LDA in Dimension d > 1
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PCA vs LDA
674 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 14.15 Images from the Harvard database used by Belhumeur, Hespanha, and Krieg-
man (1997) c⇥ 1997 IEEE. Note the wide range of illumination variation, which can be more
dramatic than inter-personal variations.
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where a = UT (x � m) (14.11) involves computing a dot product between the signed
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• PCA : Maximize projected variance.

• LDA : Maximise between class variance and minimize within 

class variance.
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Fisher LDA on MNIST

2D 3D

—> It only takes relatively low-dimensional spaces to yield decent 
clusters! 



46

EigenFaces vs FisherFaces

Swets & Weng, PAMI’96

• Consider a dataset of face images:

• 2 different expressions.

• several illumination conditions.

• One can apply either PCA or LDA to these images

• The resulting eigenvectors can also be thought of as images.

• They are called eigenfaces for PCA and fisherfaces for LDA.
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EigenFaces vs FisherFaces

Swets & Weng, PAMI’96

EigenFaces

FisherFaces

• The EigenFaces contain information about the illumination and 
yield the best reconstructions.


• The FisherFaces discard the illumination information and are thus 
more useful for classification. 
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Linear vs NonLinear

• We could get better classification results 
with non-linear classifier. 


• Is it also true of dimensionality reduction?


—> We will talk about this next week.


