SOLUTION SUGGESTIONS SERIE 9 - EVEN
NUMBERED EXERCISES

Solution (Exercise 2). Hint for 1 and 2 Let {fi, f2,..., fu} be an
arbitrary orthonormal basis of R” and 7' : R® — R™ be a linear map
s.t. T(e;) = f; where {ey,...,e,} is the standard orthonormal basis.
Since T" maps the standard orthonormal basis to an orthonormal basis,
it is orthogonal, i.e. the matrix of T in the standard basis satisfies
ML = Mt

Let ¢ : R® — R" be a linear map with matrix M, in the standard
basis. Its matrix in the basis {fi, ..., fo} is given by MyMzM;"' =
My MgM?. From this the reader can easily check that if the matrix of
¢ is orthogonal in one orthonormal basis the same is true w.r.t. any
orthonormal basis.

Hint for 4

From the expression for the matrix in different bases given above,
we see that the determinant of a matrix is independent of the choice
of basis and is therefore attached to the linear transformation.

Hint for 3

Let {vy, ..., v, } be an arbitrary basis of R". We know that the matrix
of ¢ is orthogonal w.r.t. this basis iff < ¢(v;), ¢(v;) >= ,—;. Further
< ¢(v;), p(vj) >=< v;,v; >, therefore the matrix is orthogonal w.r.t
this basis iff the basis is orthonormal.

Solution (Exercise 4). This exercise deals with the action of orthogo-
nal maps — Isom(R™)y on the set of orthonormal bases of R” — BO.

(1) Let {ey, e, €5, ....,e,} be the standard orthonormal basis of R™.
Let {fi, f2, ..., fu} be another orthonormal basis. Let the lin-
ear transformation ¢ : R — R"™ be defined by ¢(e;) = fi,
the transformation ¢ is orthogonal since it maps the standard
orthonormal basis to another orthonormal basis. This construc-
tion shows that the action of orthogonal maps on BQ is transi-
tive.

An orthogonal map fixing the standard orthonormal basis is
identity, since orthogonal maps are linear. This shows that the
stabiliser of any element of BO is trivial. So the map ¢ €
Isom(R™)g — {o(e1), ..., p(en)} € BO induces a bijection

Isom(R™)y ~ BO
1
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(2) Given a vector e € S"! we can complete it to an element of BO
ie. 3 fo, .., fu st. {e, fo, ..., fu} € BO. This follows since any
set of linearly independent vectors can be completed to a basis
and applying Gram-Schmidt to make the basis orthonormal.
Transitivity of action of Isom(R™)y on S™~! follows easily from
the transitivity of action of Isom(R")y on BO.

(3) Let e € S ! be any vector, by part (2) 3 ¢ € Isom(R"), s.t.
¥(e,) = e. You can check that

Isom(R")g. = z/zlsom(]R")Qen@D_l
Therefore
Isom(R")g.e >~ Isom(R")ge,

(4) Let ¢ € Isom(R®)g,, have basis My w.r.t. the standard or-
thonormal basis. Suppose

My =

8 o 2
< Qo
SIS

we have ¢(e3) = ue; + veg + zes, it follows that u = 0,v =
0,z=1. < ¢(e1),P(e3) >=< e1,e3 >= 0, on the other hand <
o(er), p(es) >=< ¢(e1), e3 >= x. Similarly, < ¢(ez), p(e3) >=<
es,e3 >= 0, on the other hand < ¢(ey), P(e3) >=< @(eq), €3 >=
y. Further

a b\'fa b\ [a b\{a b\ (10
c d c d)] \c d c d) 01
So the result follows.
(5) Let ¢ € Isom(R™)y., have basis M, = (fij)1<ij<n W.r.t. the
standard orthonormal basis. Here f;; =< ¢(e;),e; >. Firstly
fin =< ¢(e,), e >=<e,,e; >= 0i—p). Further f,; =< P(ei), e, >=<
o(e;), d(en) >=< e;, e, >= d;—,. Observe that the upper block
m = (fij)lgi,jgn—l satisfies mtm = mmt = Idn_1><n_1 SO
is orthogonal.

Solution (Exercise 6). Let ¢yw : V — W be a surjective linear isom-
etry. If we have ¢y (v) = 0 for some v € V ie. |pvw(v) — 0] =0, we
conclude that |[v — 0] = 0 since ¢y is a linear isometry. So ¢y is
also injective and hence dim(V') = dim(W).

Let us denote dim(V) = m. Let {vy,vs,...,v,} be an orthonormal
basis of R" s.t. vy,...,v,, € V (and so form an orthonormal basis of
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V). Note this is possible since starting with an orthonormal basis of
V extend it to a basis of R” and apply Gram-Schmidt procedure to
get a basis with the given property. Similarly {w;,ws,...,w,} be an
orthonormal basis of R" s.t. wy,...,w,, € W. Define a linear transfor-
mation ¢ : V. — W by ¢(v;) = ¢yw(v;) for 1 <i < m and ¢(v;) = w;
form+1<i<n.

Observe that ¢p(v) = ¢y (v) for allv € V. Further {¢(v1), ..., p(vn)}
are orthonormal (since ¢y, is a linear isometry into W and {wp, 41, ..., w, }
form an orthonormal basis of W) So ¢ is a linear isometry of R™ ex-
tending ¢y.w as desired.

Solution (Exercise 8). We proceed as in Ex 1 to determine if the
matrix is orthogonal and if so we determine its nature by calculating
the eigenvalues. We can find the type just by looking at the trace and
determinant:

L8 14
“(1 8 -4
9\1 -4 —7

is orthogonal and is a reflection about the plane Rv; @ Rvy where vy =
(1,1,0) and vy = (4,0, 1) in the standard basis.

1 8 1 —4
-1 8 —4
I\4 -1 —7
is not orthogonal
-2 -1 2
-1 2 2
-2 2 -1

is orthogonal and its type is a rotation with axis R(0,2, 1) and angle
+ arccos(2).

L /-9 —12 -20
~ (=20 15 o0
25\ 12 —16 15

is orthogonal and its type is an antirotation with axis R(2,1,1) and

angle + arccos(22).

Solution (Exercise 10). Let
p(r,y,2) = (XY, Z)
with .
X = §(9c—8y—|—4z)—1
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1
Y = §(4x+4y+7z)+2

1
7 = 5(—8x+y+4z)—|—2
(1) First we look at the linear part:

/1 -8 4
L
I\_8 1 4

This is a rotation with axis R(—1,2,2) and angle 7. The trans-
lation vector is parallel to the axis so this is a vissage. (¢ has

no fixed points.)
(2) let Y(z,y,2) = (X', Y', Z') with

1
X':§(x+2y—|—22)+1

, 1
Y 25(233—1-?;—22)—1

1
Z’:§(2x—2y+z)—1.

First we look at the linear part:

1 2 2
e 1 o
3\2 —2 1

This is a reflection about the plane R(1,1,0) @ R(1,0,1) =
(R(—1,1,1))*. The translation vector is perpendicular to the
plane. The set of fixed points is the affine plane (3/2,0,0) +
R(1,1,0) @ R(1,0,1), ¢ is just the reflection w.r.t. this plane.
(3) The nature of ¢ o1 o ¢~: By the proof of exercise 9.1, the
transformation @ o1 o ! is a reflection about the affine plane

©(3/2,0,0) + Re(1,1,0) @ Rip(1,0,1).
O

Solution (Exercise 12). Let a,b,c,d,e, f € R. Consider p(z,y,z) =
(X,Y, Z) in the standard basis with

1

X = g(Qx—2y+az)+1
1

Y = g(x+by+2z)+e

1
Z = E(cx—y%—?z)—l—f
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(1) First let us look at the linear part:

2 =2 a
1
p 1 b 2
c —1 2

Using the fact that the linear part is an orthogonal matrix
the rows are orthogonal to each other, we get

a=1,b=2,c= -2
and using the fact that each row has norm 1 we get
d= 43

For ¢ to be a vissage, the linear part has to be special orthog-
onal, we conclude that

d=3
The reader may calculate that the axis of this rotation is
R(—1,1,1). Further for ¢ to be a vissage, the translation vector
is not in Im(ypg — id). i.e.
< (_17171)7<1ae7f) >7é0 — e+f7é 1
(2) For ¢ to be an anti rotation, from calculations as above we have
(a,b,c,d) = (1,2,—2,-3)

and e, f are arbitrary reals.
(3) Let us assume that ¢ is not a vissage. From part (1) and part
(2), we know that the linear part is either

2 —92 1
LT 9 o
3\ 2 1 2

or
2 2 1
L T
3 \2 1 2

In the first case ¢y is a rotation with axis R(—1,1,1) and angle

7 and in the second case o is an anti rotation with axis

R(—1,1,1) and angle £3. In both these cases,
QO(G) = IdRS

. Further since ¢ is not a vissage we have ¢(v) = po(v) + u
with u = (g — Id)w for some w € R3. We get

p(v) = po(v+w) —w
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and inductively you can see that
P (V) = i +w) —w
In particular
) =piv+w) —w=v+w—w=uv

since p§ = Idgs.



