
Markov Chains and Algorithmic Applications: WEEK 1

1 Markov chains: basic definitions

Definitions 1.1. A time-homogeneous Markov chain is a discrete-time stochastic process (Xn,
n ≥ 0) with values in a finite or countable set S (the state space) such that:

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) =
↑

Markov property

P(Xn+1 = j|Xn = i) =
↑

time-homogeneity

pij (independent of n)

for every n ≥ 0 and j, i, in−1, . . . , i1, io ∈ S.

The transition matrix of the chain is the matrix P = (pij)i,j∈S defined as pij = P(Xn+1 = j|Xn = i).
It satisfies the following properties:

0 ≤ pi,j ≤ 1 ∀i, j ∈ S and
∑
j∈S

pi,j =
∑
j∈S

P(Xn+1 = j|Xn = i) = 1 ∀i ∈ S

Note however that for a given j ∈ S,
∑

i∈S pi,j can be anything.

The transition graph of the chain is the oriented graph where vertices are states and an arrow from i
to j exists if and only if pij > 0, taking value pij when it exists.

The distribution of the Markov chain at time n ≥ 0 is given by:

π
(n)
i = P(Xn = i) i ∈ S

and its initial distribution is given by:

π
(0)
i = P(X0 = i) i ∈ S

For every n ≥ 0, we have
∑

i∈S π
(n)
i = 1.

Example 1.2. Music festival

concert

dance

bar home1/2

1/2 1

1/4

1/4

1/4
1/4

1

The state space is here S = {concert, dance, bar, home} and the transition matrix is given by (with this
ordering of the states):

P =


0 1/2 1/2 0
0 0 1 0

1/4 1/4 1/4 1/4
0 0 0 1


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Example 1.3. Simple symmetric random walk.

State space : Z. Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables taking values 1 or −1 with
probability 1/2. Then the process (Sn, n ≥ 0) defined as S0 = 0 and Sn = X1 + ... + Xn for n ≥ 1 is a
Markov chain. Indeed:

P(Sn+1 = j|Sn = i, . . . , S0 = i0) = P(Sn +Xn+1 = j|Sn = i, . . . , S0 = i0)

= P(Xn+1 = j − i|Sn = i, . . . , S0 = i0) = P(Xn+1 = j − i) =

{
1/2 if |j − i| = 1

0 otherwise

Similarly,

P(Sn+1 = j|Sn = i) = P(Sn +Xn+1 = j|Sn = i)

= P(Xn+1 = j − i|Sn = i) = P(Xn+1 = j − i) =

{
1/2 if |j − i| = 1

0 otherwise

which proves the claim.

The transition ”matrix” here is actually an operator, as the state space is infinite, but we can simply
write that pij = 1/2 if |j − i| = 1, 0 otherwise.

The transition graph is given by:

0 1 2-1-2 ......

1/2 1/2 1/2 1/2 1/2 1/2

1/21/21/21/21/21/2

Here are now two main questions that will retain our attention for the first part of the course:

A. When does π(n) (the distribution at time n) converge as n→∞ to some limiting distribution π?

B. When it converges, at what rate does is converge? (is π(n) any close to π for a given value of n?)

Definition 1.4. m-step transition probabilities For m ≥ 1 and i, j ∈ S, we define:

p
(m)
ij = P(Xn+m = j|Xn = i) = P(Xm = j|X0 = i)

where the second equality comes from the time-homogeneity property. We also define by convention:

p
(0)
ij = δij =

{
1 if i = j

0 otherwise

How to compute these probabilities? Using the Chapman-Kolmogorov equations. For m = 2, these
read:

p
(2)
ij =

∑
k∈S

pik pkj = (P · P )ij = (P 2)ij

Indeed, we check that

p
(2)
ij = P(X2 = j|X0 = i) =

∑
k∈S

P(X2 = j,X1 = k|X0 = i)

=
∑
k∈S

P(X2 = j|X1 = k,X0 = i)P(X1 = k|X0 = i) =
∑
k∈S

pik pkj

where we used the Markov property in the last equality.
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For higher values of m and 0 ≤ ` ≤ m, Chapman-Kolmogorov equations read:

p
(m)
ij =

∑
k∈S

p
(`)
ik p

(m−`)
kj = (P ` · Pm−`)ij = (Pm)ij

and the proof goes along the same lines.

Example 1.5. Simple symmetric random walk:

p
(2n)
00 =

(
2n

n

)
1

22n
, n ≥ 1

2 Classification of states

Definitions 2.1. Two states i, j ∈ S communicate (”i ←→ j”) if ∃n,m ≥ 0 such that p
(n)
ij > 0 and

p
(m)
ji > 0.

The ”communicate” relation is an equivalence relation: reflexive, symmetric and transitive. The first
two are obvious, and the transitivity can be checked by using the above Chapman-Kolmogorov equations:

If ∃n,m s.t. p
(n)
ij > 0 and p

(m)
jk > 0, then p

(n+m)
ik =

∑
l∈S p

(n)
il p

(m)
lk ≥ p(n)ij p

(m)
jk > 0

The state space S can be therefore be partitioned into disjoint equivalence classes.

A chain is said to irreducible if all states communicate (a single class).

A state i is said to be absorbing if pii = 1.

1

2 3

4

Figure 1: Nodes 1 and 2 are in the same class, while nodes 3 and 4 are in another class.

Definition 2.2. Periodicity. For a state i ∈ S, define di = gcd({n ≥ 1 : p
(n)
ii > 0}). If di = 1, we say

that state i is aperiodic. Else if di > 1, we say that state i is periodic with period di.

Facts.

In a given equivalence class, all states have the same period di = d.

If there is at least on self-loop in the class (∃i ∈ S s.t.pii 6= 0), then all states in the class are aperiodic.
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Example 2.3. Periodic and aperiodic chains

1

2 4

3

p
(1)
11 = 0

p
(2)
11 > 0

p
(3)
11 = 0

p
(4)
11 > 0

d1 = 2 = d so it is periodic

1

2 5

3 4

p
(1)
11 = 0

p
(2)
11 > 0

p
(3)
11 = 0

p
(4)
11 > 0

p
(5)
11 > 0

d1 = 1 = d so it is aperiodic
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