Markov Chains and Algorithmic Applications: WEEK 1

1 Markov chains: basic definitions

Definitions 1.1. A time-homogeneous Markov chain is a discrete-time stochastic process (X_{n}, $n \geq 0$) with values in a finite or countable set S (the state space) such that:

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right) \underset{\substack{\text { Markov property }}}{\underset{P}{P}\left(X_{n+1}=j \mid X_{n}=i\right) \underset{\substack{\text { time-homogeneity }}}{=} p_{i j}(\text { independent of } \mathrm{n})}
$$

for every $n \geq 0$ and $j, i, i_{n-1}, \ldots, i_{1}, i_{o} \in S$.
The transition matrix of the chain is the matrix $P=\left(p_{i j}\right)_{i, j \in S}$ defined as $p_{i j}=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)$. It satisfies the following properties:

$$
0 \leq p_{i, j} \leq 1 \quad \forall i, j \in S \quad \text { and } \quad \sum_{j \in S} p_{i, j}=\sum_{j \in S} \mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=1 \quad \forall i \in S
$$

Note however that for a given $j \in S, \sum_{i \in S} p_{i, j}$ can be anything.
The transition graph of the chain is the oriented graph where vertices are states and an arrow from i to j exists if and only if $p_{i j}>0$, taking value $p_{i j}$ when it exists.

The distribution of the Markov chain at time $n \geq 0$ is given by:

$$
\pi_{i}^{(n)}=\mathbb{P}\left(X_{n}=i\right) \quad i \in S
$$

and its initial distribution is given by:

$$
\pi_{i}^{(0)}=\mathbb{P}\left(X_{0}=i\right) \quad i \in S
$$

For every $n \geq 0$, we have $\sum_{i \in S} \pi_{i}^{(n)}=1$.

Example 1.2. Music festival

The state space is here $S=$ \{concert, dance, bar, home $\}$ and the transition matrix is given by (with this ordering of the states):

$$
P=\left(\begin{array}{cccc}
0 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example 1.3. Simple symmetric random walk.

State space : \mathbb{Z}. Let $\left(X_{n}, n \geq 1\right)$ be a sequence of i.i.d. random variables taking values 1 or -1 with probability $1 / 2$. Then the process $\left(S_{n}, n \geq 0\right)$ defined as $S_{0}=0$ and $S_{n}=X_{1}+\ldots+X_{n}$ for $n \geq 1$ is a Markov chain. Indeed:

$$
\begin{aligned}
& \mathbb{P}\left(S_{n+1}=j \mid S_{n}=i, \ldots, S_{0}=i_{0}\right)=\mathbb{P}\left(S_{n}+X_{n+1}=j \mid S_{n}=i, \ldots, S_{0}=i_{0}\right) \\
& =\mathbb{P}\left(X_{n+1}=j-i \mid S_{n}=i, \ldots, S_{0}=i_{0}\right)=\mathbb{P}\left(X_{n+1}=j-i\right)=\left\{\begin{array}{l}
1 / 2 \text { if }|j-i|=1 \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathbb{P}\left(S_{n+1}=j \mid S_{n}=i\right)=\mathbb{P}\left(S_{n}+X_{n+1}=j \mid S_{n}=i\right) \\
& =\mathbb{P}\left(X_{n+1}=j-i \mid S_{n}=i\right)=\mathbb{P}\left(X_{n+1}=j-i\right)=\left\{\begin{array}{l}
1 / 2 \text { if }|j-i|=1 \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

which proves the claim.
The transition "matrix" here is actually an operator, as the state space is infinite, but we can simply write that $p_{i j}=1 / 2$ if $|j-i|=1,0$ otherwise.

The transition graph is given by:

Here are now two main questions that will retain our attention for the first part of the course:
A. When does $\pi^{(n)}$ (the distribution at time n) converge as $n \rightarrow \infty$ to some limiting distribution π ?
B. When it converges, at what rate does is converge? (is $\pi^{(n)}$ any close to π for a given value of n ?)

Definition 1.4. m-step transition probabilities For $m \geq 1$ and $i, j \in S$, we define:

$$
p_{i j}^{(m)}=\mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=\mathbb{P}\left(X_{m}=j \mid X_{0}=i\right)
$$

where the second equality comes from the time-homogeneity property. We also define by convention:

$$
p_{i j}^{(0)}=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

How to compute these probabilities? Using the Chapman-Kolmogorov equations. For $m=2$, these read:

$$
p_{i j}^{(2)}=\sum_{k \in S} p_{i k} p_{k j}=(P \cdot P)_{i j}=\left(P^{2}\right)_{i j}
$$

Indeed, we check that

$$
\begin{aligned}
p_{i j}^{(2)} & =\mathbb{P}\left(X_{2}=j \mid X_{0}=i\right)=\sum_{k \in S} \mathbb{P}\left(X_{2}=j, X_{1}=k \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{2}=j \mid X_{1}=k, X_{0}=i\right) \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right)=\sum_{k \in S} p_{i k} p_{k j}
\end{aligned}
$$

where we used the Markov property in the last equality.

For higher values of m and $0 \leq \ell \leq m$, Chapman-Kolmogorov equations read:

$$
p_{i j}^{(m)}=\sum_{k \in S} p_{i k}^{(\ell)} p_{k j}^{(m-\ell)}=\left(P^{\ell} \cdot P^{m-\ell}\right)_{i j}=\left(P^{m}\right)_{i j}
$$

and the proof goes along the same lines.
Example 1.5. Simple symmetric random walk:

$$
p_{00}^{(2 n)}=\binom{2 n}{n} \frac{1}{2^{2 n}}, \quad n \geq 1
$$

2 Classification of states

Definitions 2.1. Two states $i, j \in S$ communicate (" $i \longleftrightarrow j "$) if $\exists n, m \geq 0$ such that $p_{i j}^{(n)}>0$ and $p_{j i}^{(m)}>0$.
The "communicate" relation is an equivalence relation: reflexive, symmetric and transitive. The first two are obvious, and the transitivity can be checked by using the above Chapman-Kolmogorov equations:
If $\exists n$, m s.t. $p_{i j}^{(n)}>0$ and $p_{j k}^{(m)}>0$, then $p_{i k}^{(n+m)}=\sum_{l \in S} p_{i l}^{(n)} p_{l k}^{(m)} \geq p_{i j}^{(n)} p_{j k}^{(m)}>0$
The state space S can be therefore be partitioned into disjoint equivalence classes.
A chain is said to irreducible if all states communicate (a single class).
A state i is said to be absorbing if $p_{i i}=1$.

Figure 1: Nodes 1 and 2 are in the same class, while nodes 3 and 4 are in another class.
Definition 2.2. Periodicity. For a state $i \in S$, define $d_{i}=\operatorname{gcd}\left(\left\{n \geq 1: p_{i i}^{(n)}>0\right\}\right)$. If $d_{i}=1$, we say that state i is aperiodic. Else if $d_{i}>1$, we say that state i is periodic with period d_{i}.

Facts.

In a given equivalence class, all states have the same period $d_{i}=d$.
If there is at least on self-loop in the class $\left(\exists i \in S\right.$ s.t. $\left.p_{i i} \neq 0\right)$, then all states in the class are aperiodic.

Example 2.3. Periodic and aperiodic chains

$$
\begin{aligned}
p_{11}^{(1)} & =0 \\
p_{11}^{(2)} & >0 \\
p_{11}^{(3)} & =0 \\
p_{11}^{(4)} & >0
\end{aligned}
$$

$$
d_{1}=2=d \text { so it is periodic }
$$

$$
\begin{aligned}
p_{11}^{(1)} & =0 \\
p_{11}^{(2)} & >0 \\
p_{11}^{(3)} & =0 \\
p_{11}^{(4)} & >0 \\
p_{11}^{(5)} & >0
\end{aligned}
$$

$d_{1}=1=d$ so it is aperiodic

