1) Let (Xn, n >0) be a Markar charm with state space S. Which of the following statement(s) is correct?

a)
$$i \in S$$
 is transient iff $P(X_1 \neq i \forall h \geq 1 \mid X_0 = i) = 1$

b) $i \in S$ is transpent iff $P(\exists n \ge 1 \text{ s.t. } X_n = i \mid X_0 = i) = 0$ c) $i \in S$ is recurrent iff $\exists n \ge 1 \text{ s.t. } P(X_n = i \mid X_0 = i) = 1$

d) $i \in S$ is recurrent iff $P(X_n \neq i \mid \forall h \geq 1 \mid X_o = i) = C$ e) $i \in S$ is recurrent iff $P(T_i = +\infty \mid X_o = i) < 1$ (where $T_i = \inf\{n \geq 1 : X_n = i\}$)

- 2) Let X be a Marka chain with finite state space S. Which of the following changes can impact the recurrence/transience of same states?
 - a) Changing the weights of same arrows in the transition graph (while keeping them all strictly positive)
 - b) Changing the directions of some arrows in the transition graphs
 - c) Adding self-loops in the transition graph
 - d) Remarky same arraws in the transition graph

3) Let
$$X$$
 be a random variable with values in $\mathbb{N}^* = \{1,2,3,...\}$

We have seen that it is possible that $\mathbb{P}(X < +\infty) = 1$

and $\mathbb{E}(X) = +\infty$ simultanearsly. Same examples:

a) If $\mathbb{P}(X = n) = 2^n$, then $\mathbb{P}(X > n) = ?$

& $\mathbb{E}(X) < +\infty$ or $\mathbb{E}(X) = +\infty$?

b) If
$$P(X=n) = G$$
, then $P(X>n) = ?$
 $E(X) = +\infty$
 $E(X) = +\infty$