
Markov Chains and Algorithmic Applications: WEEK 7

1 The cut-off phenomenon

1.1 Summary of the two previous lectures

Recall that we are considering a Markov chain (Xn, n ≥ 0) with transition matrix P and a finite state
space S, with |S| = N . We assume that the chain is ergodic (irreducible, aperiodic and positive-recurrent),
thus there is a unique stationary and limiting distribution π, with π = πP , and pij(n) −−−−→

n→∞
πj , ∀i, j ∈ S.

Finally, we assume that the detailed balance equation is satisfied: πi pij = πj pji, ∀i, j ∈ S.

Under these assumptions, the transition matrix P has N eigenvectors φ(0), · · · , φ(N−1) ∈ RN , and N
corresponding eigenvalues 1 = λ0 > λ1 ≥ · · · ≥ λN−1 > −1 such that Pφ(k) = λkφ

(k) ∀0 ≤ k ≤ N − 1.
We define also λ∗ := max1≤k≤N−1 |λk| = max{λ1,−λN−1}.

In the previous lecture, we studied the rate of convergence of the distribution of this Markov chain
towards π. If the initial state is X0 = i, at time-step n the probability distribution is given by Pni .
We measure the distance between this distribution and π in terms of the total variation (TV) distance:
‖Pni − π‖TV := 1

2

∑
j∈S |pij(n)− πj |. We proved the following bound:

Theorem 1.1 (Rate of Convergence). Under the above assumptions,

‖Pni − π‖TV ≤
λn∗

2
√
πi
, ∀i ∈ S, n ≥ 1

Notice that this upper bound decays exponentially in terms of n. Today, we study a reciprocal statement,
which gives a corresponding lower bound (under additional assumptions), that also decays exponentially
in terms of n. We study examples where these two bounds are tight or loose. We also analyze an example
of the cut-off phenomenon, where the actual TV distance does not have a smooth exponential decay in
terms of n, but rather a sudden drop from 1 to 0 in a short interval.

1.2 Reciprocal statement

Before we present the statement, we need to better understand the concept of total variation distance.

Proposition 1.2. Let µ, ν be two probability distributions over the state space S. The following are
equivalent definitions for the total variation distance ‖µ− ν‖TV :

‖µ− ν‖TV =
1

2

∑
j∈S
|µj − νj | (1)

= max
A⊂S
|µ(A)− ν(A)| where µ(A) =

∑
j∈A

µj (2)

=
1

2
max

φ:S→[−1,1]
|µ(φ)− ν(φ)| where µ(φ) =

∑
j∈S

µjφj (3)

Proving these equivalences is left as an exercise (suggestion: show that (1) ≤ (2) ≤ (3) ≤ (1)).
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In the theorem below, we will use these facts about the eigenvectors of the transition matrix P , which
have already been seen in class:

1. λ0 = 1 and φ(0) = (1, · · · , 1)T ;

2. φ
(k)
j =

u
(k)
j√
πj

where (u(k))Tu(l) = δkl.

Theorem 1.3 (Reciprocal Statement). Under the above assumptions, and with the additional condition

|φ(k)0 | = 1, |φ(k)j | ≤ 1, ∀k ∈ {0, · · · , N − 1}, j ∈ S, we have

‖Pn0 − π‖TV ≥
λn∗
2
, ∀n ≥ 1

Proof. Because of the additional assumption that all eigenvectors satisfy |φ(k)j | ≤ 1, ∀j, k, we can use the
third definition of the TV distance:

‖Pn0 − π‖TV =
1

2
max

φ:S→[−1,1]
|Pn0 (φ)− π(φ)| ≥ 1

2
max

1≤k≤N−1
|Pn0 (φ(k))− π(φ(k))|

We do not include k = 0 in the above formula, because for k = 0, |Pn0 (φ(0))− π(φ(0))| = 1− 1 = 0. We
compute the two terms on the right-hand side separately:

Pn0 (φ(k)) =
∑
j∈S

p0j(n)φ
(k)
j = (Pnφ(k))0 = (λnkφ

(k))0 = λnkφ
(k)
0

and
π(φ(k)) =

∑
j∈S

πjφ
(k)
j =

∑
j∈S

πjφ
(k)
j (φ

(0)
j )︸ ︷︷ ︸
=1

=
∑
j∈S

u
(k)
j u

(0)
j = (u(k))Tu(0) = 0 (for k 6= 0)

Therefore,

‖Pn0 − π‖TV ≥
1

2
max

1≤k≤N−1
|Pn0 (φ(k))− π(φ(k))| = 1

2
max

1≤k≤N−1
|λnk | |φ

(k)
0 |︸ ︷︷ ︸
=1

=
1

2
max

1≤k≤N−1
|λnk | =

1

2
λn∗

1.3 Examples

The upper and lower bounds for ‖Pn0 −π‖TV seem to be very close, as they only differ by a multiplicative
factor of 1/

√
π0. But if this factor is very large with respect to the inverse of the spectral gap γ−1 =

(1 − λ∗)−1, the bounds are no longer tight. In the next two examples, it is easy to check that all the
assumptions are satisfied, including the condition in the reciprocal statement.

Example 1.4 (Random walk over odd cycle). Consider the random walk over an odd cycle, where
S = {0, · · · , N − 1}, N is odd, and pij = 1

2 if i − j ≡ ±1 mod N , 0 otherwise. As we proved in an

exercise, in this case λ∗ = cos(π/N) ≈ 1 − π2

2N2 (when N is large), so λn∗ ≈ exp(− π2n
2N2 ). On the other

hand, πj = 1
N ∀j ∈ S. Therefore:

1

2
exp

(
− π

2n

2N2

)
≤ ‖Pn0 − π‖TV ≤

√
N

2
exp

(
− π

2n

2N2

)

The upper and lower bounds become arbitrarily close to zero for n� N2 and n� N2 logN , respectively.
In this case, the bounds are relatively tight and describe well the true behaviour of the TV distance. Two
parameters are at play here: the size of the state space (related to

√
π0) and the spectral gap γ.
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Example 1.5 (Lazy walk over the binary hypercube). Fix a number d and consider the following variant
of the Ehrenfest urns example: there are d balls numbered from 1 to d, partitioned over two urns which
are labeled ’0’ and ’1’. At each step, we pick a number t between 0 and d uniformly at random: if we
pick t = 0, we do nothing; else we move ball t to the opposite urn. Each possible configuration of the
balls is described by a vector x ∈ {0, 1}d, where xt indicates which urn contains ball t. Hence the state
space is S = {0, 1}d, with N = |S| = 2d, and the transition probabilities are pxy = 1

d+1 if x = y or x and
y differ in exactly one coordinate, 0 otherwise.

Another way to look at this problem is as a lazy random walk over the d-dimensional binary cube. We
make the walk lazy (i.e. with self-loops) because otherwise it would be periodic. We denote by 0 the
all-zero vector in {0, 1}d, and index the 2d eigenvalues and eigenvectors with elements z ∈ {0, 1}d.

Lemma 1.6. The eigenvalues and eigenvectors of the transition probability matrix are

λz = 1− 2|z|
d+ 1

, where |z| = number of non-zero components in z

and
φ(z)x = (−1)z·x ∀x ∈ {0, 1}d, where z · x =

∑
1≤t≤d ztxt

Proof.

(Pφ(z))x =
∑
y∈S

pxyφ
(z)
y =

1

d+ 1
φ(z)x +

1

d+ 1

∑
1≤t≤d

φ
(z)
x+et

where
φ
(z)
x+et = (−1)z·(x+et) = (−1)z·x(−1)z·et = φ(z)x (−1)zt

Thus

(Pφ(z))x =
1

d+ 1
φ(z)x

1 +
∑

1≤t≤d

(−1)zt

 =
1

d+ 1
φ(z)x (1 + d− 2|z|) =

(
1− 2|z|

d+ 1

)
φ(z)x

which proves that

Pφ(z) =

(
1− 2|z|

d+ 1

)
φ(z)

Notice in particular that λ0 = 1, φ(0) = (1, · · · , 1)T , and |φ(z)x | = 1, ∀x, z ∈ {0, 1}d. The eigenvalues have
high multiplicities: for 1 ≤ t ≤ d, the eigenvalue λ = 1− 2t

d+1 corresponds to
(
d
t

)
eigenvectors, namely all

those φ(z) with |z| = t. The eigenvectors are also orthogonal:

(φ(z))Tφ(w) =
∑
x∈S

φ(z)x φ(w)
x =

∑
x∈S

(−1)z·x(−1)w·x =
∑
x∈S

(−1)x·(z+w) =

{
2d if z = w
0 otherwise

Finally, in this case, we obtain λ∗ = 1− 2
d+1 , so λn∗ ≈ exp(− 2n

d+1 ) for large d and n. On the other hand,

the limiting distribution is uniform, so πx = 2−d ∀x ∈ S. Therefore,

1

2
exp

(
− 2n

d+ 1

)
≤ ‖Pn0 − π‖TV ≤ 2

d
2−1 exp

(
− 2n

d+ 1

)
In this particular case, the bounds are loose, and do not really capture the true behaviour of the TV
distance. Note that the state space is exponentially large. It turns out that in this example, the TV
distance behaves in an unexpected way.
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1.4 Cut-off phenomenon

When the cut-off phenomenon occurs, the value of the TV distance does not decay smoothly and expo-
nentially, but rather it rapidly drops in a short interval. More concretely, there is a mixing time τ such
that the distance remains close to 1 when n < τ , and rapidly converges to 0 when n > τ . We will prove
that the last example observes the cut-off phenomenon, with mixing time τ = d+1

4 log d.

Proposition 1.7. Let c be a large positive constant. In the last example:

If n =
d+ 1

4
(log d+ c), then ‖Pn0 − π‖TV → 0 as c increases.

If n =
d+ 1

4
(log d− c), then ‖Pn0 − π‖TV → 1 as c increases.

Proof of the first statement. Assume that n = d+1
4 (log d + c). In what follows, the first inequality was

proved in lecture notes 7, within the proof of the main theorem:

‖Pn0 − π‖TV ≤
1

2

 ∑
z∈S\{0}

λ2nz

(
φ
(z)
0

)2
︸ ︷︷ ︸

=1


1/2

=
1

2

(
d∑
t=1

(
d

t

) (
1− 2t

d+ 1

)2n
)1/2

≤ 1

2

2

dd/2e∑
t=1

(
d

t

)(
1− 2t

d+ 1

)2n
1/2

≤ 1√
2

dd/2e∑
t=1

dt

t!
exp

(
− 4tn

d+ 1

)1/2

≤ 1√
2

( ∞∑
t=1

1

t!
exp

(
t log d− 4tn

d+ 1

))1/2

=
1√
2

( ∞∑
t=1

1

t!
e−tc

)1/2

=
1√
2

(
exp(e−c)− 1

)1/2 ≈ 1√
2

(
e−c
)1/2

=
1√
2
e−c/2

Notice that the final expression approaches 0 exponentially as c increases, and does not depend on d.

Proof of the second statement. Assume that n = d+1
4 (log d− c). We use the second equivalent definition

of the TV distance:

‖Pn0 − π‖TV = max
A⊂S
|Pn0 (A)− π(A)| ≥ |Pn0 (A)− π(A)|, ∀A ∈ S

To obtain a good lower bound, we want to pick an appropriate set A ⊂ S such that Pn0 (A) ≈ 0 (for
the chosen value of n) and π(A) ≈ 1. As we will see, such a set is in the “center” of S: observe indeed
that if the random variable X∞ (with values in {0, 1}d) is distributed according to π, then E(|X∞|) = d

2 .

The idea is therefore to include in A all states x with |x| ≈ d
2 . More concretely, we define f : S → Z as

f(x) = d− 2|x| =
∑d
t=1(−1)xt , and A = {x ∈ S : |f(x)| ≤ β

√
d} = {x ∈ S :

∣∣|x| − d
2

∣∣ ≤ β
2

√
d}, where β

is a parameter to be defined later.

Claim 1. π(A) ≥ 1− β−2.

Proof.

π(A) = P(X∞ ∈ A) = P
(
|f(X∞)| ≤ β

√
d
)

= 1− P
(
|f(X∞)| > β

√
d
)
≥ 1−

E
(
f2(X∞)

)
β2d
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by Chebychev’s inequality. The expected value of f2(X∞) is given by

E(f2(X∞)) =
∑
x∈S

f2(x)πx = 2−d
∑
x∈S

(
d∑
t=1

(−1)xt

)2

= 2−d
d∑

s,t=1

∑
x∈S

(−1)xs(−1)xt

= 2−d
d∑

s,t=1

(φ(es))Tφ(et) = 2−d
d∑

s,t=1

2dδs,t = 2−d d 2d = d

So finally, we obtain π(A) ≥ 1− d
β2d = 1− β−2. �

Claim 2. Pn0 (A) ≤ (ec/2 − β)−2.

Proof. In order to show that Pn0 (A) is small for the chosen value of n (i.e. in order to show that in n steps,
the chain does not have the time, starting from position 0, to reach the “center” of the state space S), we
need to analyze the distribution of the random variable Xn conditioned on the starting point X0 = 0. For
this, it is convenient to use P0(·), E0(·) and Var0(·) as shorthand notations for P(·|X0 = 0), E(·|X0 = 0)
and Var(·|X0 = 0), respectively. We then obtain (using the triangle inequality |a + b| ≥ |b| − |a| with
a = f(Xn)− E0 (f(Xn)) and b = E0 (f(Xn))):

Pn0 (A) = P0(Xn ∈ A) = P0

(
|f(Xn)| ≤ β

√
d
)

= P0

(
|f(Xn)− E0 (f(Xn)) + E0 (f(Xn))| ≤ β

√
d
)

≤ P0

(
|f(Xn)− E0 (f(Xn))| ≥ E0 (f(Xn))− β

√
d
)
≤ Var0 (f(Xn))(

E0 (f(Xn))− β
√
d
)2

where we have again used Chebychev’s inequality. The expectation can be computed as follows:

E0 (f(Xn)) =
∑
x∈S

p0x(n)f(x) =
∑
x∈S

p0x(n)

d∑
t=1

(−1)xt =

d∑
t=1

∑
x∈S

p0x(n)φ(et)x =

d∑
t=1

(
Pnφ(et)

)
0

=

d∑
t=1

λnetφ
(et)
0 =

d∑
t=1

(
1− 2

d+ 1

)n
= d

(
1− 2

d+ 1

)n
≈ d exp

(
− 2n

d+ 1

)
= d exp

(
c− log d

2

)
=
√
d ec/2

In a similar manner, the variance is given by

Var0(f(Xn)) = E0(f(Xn)2)− E0(f(Xn))2 ≈
∑
x∈S

p0x(n)f(x)2 − d ec =
∑
x∈S

p0x(n)

d∑
s,t=1

(−1)xs+xt − d ec

=

d∑
s,t=1

∑
x∈S

p0x(n)φ(es+et)x − d ec =

d∑
s,t=1

(
Pnφ(es+et)

)
0
− d ec

=

d∑
t=1

λn0φ
(0)
0 +

∑
s6=t

λnes+etφ
(es+et)
0 − d ec = d+ d(d− 1)

(
1− 4

d+ 1

)n
− d ec

≈ d+ d(d− 1) exp(c− log d)− d ec ≈ d

for large d. Gathering these last three computations together, we obtain

Pn0 (A) ≤ d(√
d ec/2 − β

√
d
)2 = (ec/2 − β)−2

Joining the two claims together finally leads to the inequality

‖Pn0 − π‖TV ≥ |Pn0 (A)− π(A)| = π(A)− Pn0 (A) ≥ 1− β−2 − (ec/2 − β)−2

which can be made arbitrarily close to 1 by first choosing β large and then c such that ec/2 � β.
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