Random Walks: WEEK 11

1 Ising model and Glauber dynamics

MCMC are a class of algorithms that allow to sample from distributions that typically have large state
spaces or are analytically intractable. We have already seen in previous classes an application of MCMC
to the problem of coloring graphs. This is part of a larger set of ideas that can be conveniently applied
when the state space has product form S = X"V where X is finite alphabet (say the colors {1, - ,q})
and N is very large (say the number of vertices in the graph that is colored). These algorithms go under
the name of Glauber dynamics or heat bath dynamics or Gibbs sampler.! The goal of this chapter is
to provide a short and elementary introduction with the particular example of the Ising model in mind.
We will also use this particular dynamics as a concrete example to illustrate the coupling from the past
method in the last two lectures.

1.1 Introduction to the Ising model

Consider a graph G = (V,E) with V = {1,2,.., N}, and a binary alphabet X = {1,—1}. Variables
oy € X are "attached” to the vertices v € V. These variables are called "spins” for reasons explained
briefly later on. The state space is made of spin assignments ¢ = (oy,...,0n5) € XY, If you wish you
can think of the spin assignments as functions from V' to the state space S. The probability distribution
defining the ”Ising model” is:
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where 3 > 0, Jy and hy € R and Z is a normalization constant - called the partition function - equal to

Z = Z exp( Z BywOyOy + Zﬁhvgu) (2)
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Such a distribution is of the form 1
ulg) = - exp(-BH(0)), (3)
where
’H(Q) = Z JowOuTw — Z hyoy (4)
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is a "cost” function called the Hamiltonian of the model.

Let us briefly discuss the physical origin (and interpretation) of this probability distribution. The Ising
model (1920) was originally invented as a toy model for magnetic materials. Such models are of utmost
importance in physics and statistical mechanics. One imagines that in these material there are magnetic
degrees of freedom - the magnetic moments of atoms - attached to the sites of a cubic grid which represent
the atoms of a crystal. For the simplest crystalline arrangement of atoms the graph would be a cubic
grid of size L x L x L = N where L is a linear dimension of the sample. The spins model the magnetic
moments of the atoms. Each magnetic moment behaves like a little magnet oriented south—north = +1
or north—south= —1. These magnetic moments interact and each assignment has an energy cost equal to
the Hamiltonian #H(g). The real numbers J,,, are related to the mutual interaction between neighboring
magnetic moments, and h, is a bias related to their interaction with external applied magnetic fields.
At zero temperature the system tries to find the assignment which minimises this energy function. Note
that this is for us an optimisation problem (that nature essentially solves). At finite temperature B

1Glauber dynamics was initially introduced by Roy Glauber in 1963 in ”Time dependent statistics of the Ising model®,
J. Math. Phys. 4 (1963) 294.



(and when the system is a thermal equilibrium) the magnetic moments fluctuate randomly and the basic
laws of statistical mechanics state that they behave like random variables distributed according to the
Gibbs distribution p(g).
The most important quantity that one would like to compute is perhaps the magnetization defined as
follows
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This quantity represents the total magnetic moment of the system. If it is non zero you have a magnet
(e.g. that sticks to your fridge).

More generally one would like to compute the average value of "local observables”, i.e. functions
A({ov}uea) of some finite subset of spins A C V,

(A{ovtvead) = D Al{ov}vea) ulo) (7)
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If we knew how to calculate Z then we could easily compute such averages. Indeed the reader can check
that
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This is one of the reasons why the quantity In Z plays a very important role, and one of the major aims
in statistical mechanics is to compute the ”free energy” f = —8" 1 limp 400 %In Z. This however is very
hard.

MCMC methods allow to (numerically) compute averages of observables (A({cy}vea)) by sampling from
the Gibbs distribution without computing the normalisation factor Z.

Before dwelling into the MCMC methods for this model let us give a few important examples of special
cases of the model and discuss other interpretations beyond physics.

Standard Ising model. See Figure 1. The graph G is a cubic d-dimensional grid. The vertex set is
V = {v = (i1, ,%a) | =L < 4¢ < L, = 1,--- ,d} where L is an integer, and the edge set is E =
{(v,w) € V x V| |v —w| = 1}. The total number of vertices is (2L + 1)¢. One generally distinguishes
two important physical models. The ”ferromagnetic” model where Jy,,, = J > 0 for nearest neighbords;
and the "antiferromagnetic” model where J,,,, = —J < 0 for nearest neighbords. In the former case the
spins have a tendency to "align” while in the second they have a tendency to "anti-align”. Generally
one expects that at high temperatures § — 0 the spin assignments are pretty much random since the
Gibs distribution is more or less uniform. However in the ferromagnetic case at low temperature and
no external magnetic field one expects that there are two types of typical spin assignments: those with
positive magnetization (most spins are +1) and those with negative magnetization (most spins are —1).
The state space is in this case not very well connected and one expects that it will be difficult to sample
at low temperatures.

Ising model on complete graph. This is an important special case because it leads to an exactly solvable
model. It is also an important case where MCMC methods can be studied in some detail. The graph
G is complete (so all N(N — 1)/2 edges are present) and one sets Jy = J/N where J > 0 and also
hy = h a constant. The scaling with N is important in order to have a well defined distribution. This

2For historical reasons we use the symbol (—) for the expectation E with respect to Gibbs distributions.



Figure 1: Square grid for the two-dimensional standard Ising model on {—L,- - JLY2. Usually Jyg—J
and h, = h are constant for the standard ising model. When J,,, = J > 0 we speak of a ferromagnetic
model because spin have a tendency to align in order to minimise their energy. When Jy,, = J < 0 we
speak of an anti-ferromagnetic model because spin have a tendency to anti-align in order to minimise
their energy.

is a ferromagnetic case and again (as discussed later on) it is difficult to sample from the Gibbs measure
at low temperatures. This model admits an easy solution that displays a phase transition. It is out of
the scope to discuss this solution in detail here, but to better understand the behaviour of the MCMC it

“is useful to have the general picture in mind. Figure 2 shows the total average magnetization defined as
follows:

N
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Other interpretations of the model. If you thought that this topic is specific to physics then be aware
that: Ising type models and generalizations have found interpretations and applications independent from
physics, e.g. in image processing, social networks, epidemiology, voter models, community detection,
machine learning, coding theory etc (a non-exhaustive list). They are much studied by mathematicians,
specially in probability theory, and in theoretical computer science. Let us briefly give a simplistic voter
‘model interpretation. Each vertex v is a person that votes o, = £1 (think of your favorite yes/no societal
issue). Persons v and w related by an edge are friends (Jy,, > 0) or enemies (Jy, < 0). Persons not
related by an edge don’t know each other. In our model the society is a bit simple minded: friends with
Juw > 0 tend to vote similarly, while enemies with Jy,, < 0 tend to vote in opposite ways. The biases h,
(positive or negative) may model a prior opinion that each person has a priori and influences his decision.
Sampling from pu(¢) would correspond to evaluate the voting pattern of the population.

1.2 Metropolis dynamics

The simplest Metropolis dynamics introduced in the previous lectures can be formulated as follows.
Suppose at some step of the algorithm the spin assignment is ¢. One chose a vertex v uniformly at
random (i.e. with probability 1/N) and considers the spin assignment o) where the initial spin o, is

flipped i.e. crl(,v) = —gy. Let
| AE(g — a™) = H(@e™) — H(e)

= 20, (Z JowTw + Qhu) (10)
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Figure 2: Magnetization of the complete graph Ising model. T, = J ~1 is the phase transition point.
Above this temperature we have my = 0. Below this temperature there are two possible and opposite
non-zero magnetisations. They are selected by a small ”symmetry breaking field” A — 0.

the energy change. If the energy change is negative or zero one performs the move with probability one;
while if the energy change is strictly positive one performs the move with probability
exp(—BAE(g — g™).

This can be summarised as follows. Set
Alg = g™) = min(1, e~ #AEE~e™) (11)

The Markov chain has transition probabilities
1, i ] =
2 (v) — o) o P (v) —
Posr = N;:lA(g—m Nz =ec"")+ (l szlﬁ(zﬁz ))l(zg) (12)

Ezercise. Translate this chain in the notations of left week 9. Identify the base chain and the acceptance
probabilities. Check the detailed balance condition.

1.3 Glauber dynamics

This chain presents some advantages with respect to the metropolis dynamics because it is easier to
analyse. For example we will see in the last chapter that it has nice monotonicity properties that allow
to use it in the coupling from the past method.

A word about terminology: it is also often called heat bath dynamics or Gibbs sampling,.

As before at a given time step one considers the move ¢ — () where the vertex v has been chosen at
random and the spin o, is flipped i.e. 03" = —o,. Again one computes the energy change AE(gc — ¢(*)).

One performs the move with probability

1 AE o)
3 (1 — tanh(%))

and does not perform the move with probability

1 BAE(g = c™)
Lo am P20
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Figure 3: The energy change of a move depends only on the local neighbourhood of the selected vertex

Introduce the quantity hlo¢ = h,, + > w Juw0w which is interpreted as the total "local magnetic field” at
vertex v (see figure 3). The two probabilities above can be written as

1
3 (1+ o) tanh(Bh{°)) and (1- o{¥ tanh(Bh{°))

82 =

The detailed balance condition can be checked directly from these formulas. But it can also be checked
more quickly on the more general formulation explained in the next paragraph.

Simulations on a complete graph. Here we want to discuss briefly simulation results for one of the simplest
situations: that of a complete graph with ferromagnetic constant interactions Jy,, = J/N > 0 and zero
external magnetic field h, = 0. Furthermore we normalise without loss of generality J = 1 (this amounts
to redefine the temperature scale). In this case the total average magnetisation is simply

i & D i
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The first equality is a definition (of average magnetisation per variable), the second equality comes from
the linearity of the expectation (with respect to the Gibbs distribution), and the third equality comes

from the spin-flip symmetry of the Ising model Hamiltonian when h, = 0.

We now run the Glauber dynamics starting fro a random initial condition ¢(0) and produce a sequence
of spin assignments o(t), t = 0,1,--- ,7T. For finite N and 7' — +oo the chain will mix (since detailed
balance condition is satisfied, and the chain is irreducible and aperiodic). Therefore we expect that when
we run experiments, the average empirical magnetization tends to m,

T —+oco t—rco

1 t+T 1 N
lim lim —[t dt i ;cv(t) =m=0 (14)

when 1 << t << T. If we run the Markov chain for long enough - for finite values of N - this is what we
observe. However a more detailed view of the instantaneous magnetization defined as

1 N
m(t) = = > ou(t) (15)
v=1

is very instructive. Figure 4 shows three plots of the fluctuations of this object as a function of time for
three inverse temperatures 3 = 0.8 (above the critical temperature), 8 =1 (at the critical temperature),
B = 1.2 (below the critical temperature).



Figure 4: Empirical magnetization m(t) as a function of time for three different temperatures when
computed by Glauber dynamics (initialisation is random).

We observe that for 5 = 0.8 the curve has stationary fluctuations around zero. At the critical temperature
8 = 1 the curve still fluctuates around zero, however the fluctuations are markedly higher. This is a signal
of the phase transition. For 3 = 1.2 we observe that the chain makes transition between two typical states
where the magnetization is non zero (positive or negative) for a very long time. On average the total
magnetization is zero, but for long times the chain remains stuck in states of positive and negative
magnetisations.

These numerical observations show that the mixing time behaves very differently above and below the
critical temperature. It is known that above the critical temperature (so 8 < 1) the mixing time behaves
as O(N2log N); but below the critical temperature (so 8 > 1) it behaves as O(e"). Therefore although
the ergodic theorem holds for finite N, it is not very relevant for the ”practical” situation of a very large
system that we can simulate or observe for a large but finite time. This limit is captured by N — +o0
first and T — oo after. In this limit, at low temperatures the Markov chain remains stuck in part of
the state space (the state space effectively becomes disconnected) and we say that ergodicity is broken.
Mathematically speaking in (14) we cannot exchange limits of large time and large system (N — +0o0)
do not commute.

1.4 General Gibbs sampling (or generalisation of Glauber)

Here we give a more conceptual from of the Glauber dynamics. The application to the Ising model yields
the rules of the previous paragraph.

Let m(z) a probability distribution over states z = (z1,--- ,zn) where z; € X. Thus the state space is
XN . The sampler is constructed as follows:

e Take z € XN,

Select vertex v € V uniformly at random.

e Compute the probability of y conditional on {gi = &gyt £ok
'nT(:L'], o Ty—1, Yo, Ty41, 0 :IN)
P Yy = Ty, W # V}) = 16
(El{ ¥ e 7& }) Eyvgx'ﬁ(ﬂ:la'"$v—1:yv7$v+h'“ 7$N) ( )
e Make the move z — y with probability
Py | {yw = Tw,w # v}) (17)



e Go to first item and iterate.

Summarizing, the transition probability of this chain is given by:

1 (L1, To 1,Y Tt 1, HEN)
Dgoy = N e M@y Ty 13HusTod 15 TN
- 0 otherwise.
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Ezercise: From the formula for the transition probability check the detailed balance condition m(z)pz—y =
T(y)Py—z for all pairs of states x and y. (see solution of homework set 10).

I

Here we verify that this chain reduces to the usual Glauber dynamics in the case of the Ising model.
Taking u(g) for m(z) and start at a configuration g. We consider a move g — T where 7, = 7, for w # v
(and 7, = +a,). Inspection of the Ising Hamiltonian yields:

eﬁ"‘v(zw Juww+hy) gterms indep of oy

IJ’(I | {Tw =0y, W F U}) = E - BT (L JvwGwtho) gterms indep of oy (18)
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The terms independent of o, in the numerator and denominator are the same and can be simplified.
Performing the sum over 7, in the denominator we find

eTy(z.w ﬁvaUW+3hU)
Hz [{rw =ov,w £ 0D = o 3T wow + By)

1
- §(1 + 7 tanh(Bhy + Zw: BIyw0w)

e %(1 + 7, tanh(8hie) (19)






