
LECTURE 1

YASH LODHA

1. Review of topological notions

Let X be a set. A topology on X is a collection of subsets T of X, called open sets satisfying:

(1) X and ∅ are in T .
(2) T is closed under the operation of unions: unions of open sets are open.
(3) T is closed under the operation of finite intersections: any intersection of finitely many open sets is

open.

A space with the above structure is called a topological space. A collection of subsets B of X is called a basis
for T , if:

(1) B ⊆ T .
(2) Every element of T is a union of elements of B

More generally, given a set X (without a topology on it, a priori), a collection of subsets B of X is called an
abstract basis if:

(1) X =
⋃
B∈B B and B contains the emptyset.

(2) For each triple x,B1, B2, where B1, B2 ∈ B and x ∈ B1 ∩ B2, there is a B3 ∈ B such that x ∈ B3 ⊂
B1 ∩B2.

Given an abstract basis, the collection of unions of sets in the basis is the topology generated by the basis, and
it satisfies the axioms above (prove it!).

An open set that contains a point p ∈ X is called a neighbourhood of p. A set U is said to be closed, if the
complement U c = X \ U is open. The family of closed sets of a topological space satisfies the following:

(1) X and ∅ are closed.
(2) Intersections of closed sets are closed.
(3) Any union of finitely many closed sets is closed.

Given a topology T on a set X, and a point p ∈ X, a neighbourhood basis at p is a collection Bp of
neighbourhoods of p such that every neighbourhood of p contains as a subset an element of Bp. (X, T ) is said
to be first countable, if there is a countable neighbourhood basis at each point. (X, T ) is said to be second
countable, if it admits a countable basis for the topology T .

The interior of a set S ⊆ X, denoted by Int(S), is the union of all open subsets of X contained in S, and
hence itself is open. The exterior of S, Ext(S), is the interior of the complement of S. The closure of S, denoted
as S̄, is the intersection of all closed sets containing S, hence itself is closed. S is dense in X if S̄ = X. S is
nowhere dense in X if Int(S̄) = ∅. The boundary of S, denoted as δS, is S̄ \ Int(S). A point p ∈ S ⊆ X is
an isolated point in S, if there is an open set U such that U ∩ S = {p}. A point p ∈ X is a limit point of a
set S ⊂ X, if for each open neighborhood U of p, U ∩ S \ {p} 6= ∅. A sequence {pn}n∈N of points in X is said
to converge to a point p ∈ X, if for each neighbourhood U of p, there is a number N ∈ N such that ∀n > N ,
pn ∈ U .

Let X,Y be topological spaces. A map f : X → Y is said to be continuous, if for every open set U ⊂ Y ,
f−1(U) is open. The map f is called a homeomorphism if it is a continuous bijection with a continuous inverse.
The map f is called a local homeomorphism if the restriction of f to some open set U of X is a homeomorphism
onto its image.

A metric space (X, d) is a set X with a distance function d : X ×X → R≥0 satisfying the following for all
x, y, z ∈ X:

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x, y) ≤ d(x, z) + d(z, y).

Given a metric space, we define the open and closed balls of radius r > 0, around a point p ∈ X as follows:

Br(x) = {y ∈ X | d(y, x) < r} B̄r(x) = {y ∈ X | d(y, x) ≤ r}
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The set of open balls of a metric space satisfy the axioms of an abstract basis for a topology. A topological
space is said to be metrizable, if it admits a metric whose open balls generate a topology that coincides with
the given topology. The diameter of a set S ⊆ X is the quantity Sup{d(x, y) | x, y ∈ S}. The set S bounded if
the diameter is finite.

A topological space X is said to be Hausdorff if the following holds. For each pair of points x, y ∈ X, there
exist neighbourhoods U of x and V of y, that are disjoint. Metric spaces are easily seen to be Hausdorff, for
instance.

Exercise 1.1. Show that in a Hausdorff space, the following holds:

(1) Limits of convergent sequences are unique.
(2) Finite subsets are closed.

Given a topological space, an open covering is a collection of open sets whose union is the whole space. A
subcovering is a subcollection of an open covering that is itself a covering. A topological space is said to be
compact, if every open covering of the space admits a finite subcovering. A topological space is said to be second
countable, if the topology admits a countable basis.

Exercise 1.2. Show that second countable spaces must satisfy that every open covering has a countable subcov-
ering.

Given a subset S ⊂ X of a topological space X, the induced topology on S is defined as follows. A subset
V ⊂ S is open if and only if there is an open set U ⊂ X such that U ∩ S = V . Similarly, a subset V ⊂ S is
closed if and only if there is a closed set U ⊂ X such that U ∩ S = V . An injective map f : X → Y between
topological spaces is said to be a topological embedding, if it is a homeomorphism onto its image.

Product topology Let {Xα | α ∈ I} be a finite collection of topological spaces. The product space
X =

∏
α∈I Xα is endowed with the topology with the following basis of open sets. The open sets in this basis

are all sets of the following form:

V =
∏
α

Vα Vα is open in Xα

Theorem 1.3. (Tychonoff’s theorem) A product of compact topological space is also compact.

Quotient topology Let X be a topological space, Y a set, and φ : X → Y a surjective map. The quotient
topology on Y is defined as follows. A subset U ⊆ Y is open if and only if φ−1(U) is open in X.

Proposition 1.4. (Characteristic property of the quotient topology) Let X,Z be topological spaces, Y a set,
and φ : X → Y a surjective map. Consider the quotient topology on Y . A map τ : Y → Z is continuous if and
only if τ ◦ φ is continuous.


