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1. Topological manifolds

A topological space M is called a topological manifold of dimension n if it satisfies the following:

(1) It is Hausdorff.
(2) It is second countable.
(3) (Locally Euclidean) For each point x ∈ M , there is a neighbourhood U of x which is homeomorphic

to an open subset of Rn. Hence, there is an open set U containing x, an open set V ⊂ Rn, and a
homeomorphism φ : U → V .

The following is a theorem that we shall not prove in this course, but it is important to know.

Theorem 1.1. (Topological invariance of dimension) If two manifolds are homeomorphic, then they must have
the same dimension.

Given an n-dimensional topological manifold M , a coordinate chart, or simply a chart, consists of the follow-
ing:

(1) An open set U ⊂M , called the coordinate domain.
(2) An open set V ⊂ Rn.
(3) A homeomorphism φ : U → V , called the coordinate map, with component functions defined as follows:

(x1, ..., xn) xi : U → R φ(p) = (x1(p), ..., xn(p))

Note that by definition, each point x ∈M is contained in the domain of some coordinate chart. The following
convention shall be useful. If p ∈ U and φ(p) = 0 ∈ Rn, then we say that the chart is centered at p. It is also
common to denote a chart by its coordinate functions as either of the following:

(U, (x1, ..., xn)) (U, (xi))

1.1. Examples of topological manifolds. Now we shall discuss five important examples.

(1): Graphs of continuous functions
Let U ⊂ Rn be an open set, and let φ : U → Rm be a continuous map. Consider the set

Γ(f) = {(x, y) ∈ Rn ×Rm | x ∈ U, y = φ(x)}
endowed with the subspace topology. Let π1 : Rn ×Rm → Rn be the projection to the first factor. We define

φ : Γ(f)→ Rn = π1 � Γ(f)

Since φ is a continuous bijection with a continuous inverse, it is a homeomorphism. It follows that Γ(f) is a
manifold of dimension n with a single global coordinate chart φ.

(2): Sphere

Exercise 1.2. Show that subspaces of second countable spaces are second countable. Show the same for the
Hausdorff property.

For each n ∈ N, the sphere Sn is Hausdorff and second countable, since it is a subspace of Rn+1. To see that
it is a manifold, we need to show that it is locally Euclidean. For each 1 ≤ i ≤ n+ 1, we define the subspaces

X+
i = {(x1, ..., xn+1) ∈ Sn+1 | xi > 0} X−

i = {(x1, ..., xn+1) ∈ Sn+1 | xi < 0}
For each 1 ≤ i ≤ n+ 1, we check that X±

i are graphs of the functions

f±i : Bn → R f±1
i (v) = ±

√
1− |v|2 v = (x1, ..., x̂i, ..., xn+1)

where the x̂i denotes that this coordinate has been removed. Here Bn is the open n-dimensional unit ball in Rn

centered at 0. These X±
1 , ..., X

±
n+1 provide the required charts, making our topological space locally Euclidean.
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(3): Projective spaces
The n-dimensional real projective space is denoted as Pn. This is the space of all 1-dimensional linear

subspaces of Rn+1, with the quotient topology induced by the natural map

τ : Rn+1 \ {0} → Pn τ(x) = [x]

where [x] denotes the linear subspace of Rn+1 spanned by x.
For each 1 ≤ i ≤ n+ 1, let

Ui = τ(Vi) Vi = {(x1, ..., xn+1) ∈ Rn+1 | xi 6= 0}

Define the map

φi : Vi → Rn φi(x1, ..., xn+1) = (
x1
xi
, ...,

xi−1

xi
,
xi+1

xi
, ...,

xn+1

xi
)

The map φi is well defined, since it is invariant under multiplying the input vector (x1, ..., xn+1) by a scalar.
Moreover, φi is a bijection with inverse (x1, ..., xn) → (x1, ..., xi−1, 1, xi, ..., xn). The map φi is seen to be a
homeomorphism thanks to the characteristic property of quotient maps. The domains of these maps cover the
projective plane, and hence provide the coordinate charts.

Exercise 1.3. Show that the projective plane is Hausdorff and second countable. Show that it is compact.

(4): Product manifolds and the Torus

Exercise 1.4. Show that a finite product of Hausdorff and second countable spaces is also Hausdorff and second
countable.

Let M1, ...,Mk be topological manifolds of dimension n1, ..., nk respectively. The product space M = M1 ×
... ×Mk is a manifold of dimension n1 + ... + nk. Thanks to the exercise above, it is second countable and
Hausdorff. We need to check that it is locally Euclidean. Given a point (p1, ..., pk) ∈ M , we know that there
exist charts for each 1 ≤ i ≤ k

φi : Ui → Ūi ⊂ Rni pi ∈ Ui ⊂Mi

In effect, we obtain a chart

φ1 × ...φk : U1 × ...Uk → Ū1 × ...× Ūk Ū1 × ...× Ūk ⊂ Rn1+..+nk

An example of a product manifold is the n-torus, which is the n-manifold:

Tn = S1 × ...× S1 (an n-fold product)

Exercise 1.5. Consider the topological space constructed as follows. Let

X1 = R× {a} X2 = R× {b}

where a, b is a set of two points. Note that X1, X2 are both homeomorphic to R. Consider the disjoint union of
X1, X2. Now X is the quotient space given by identifying pairs (x, a) ∼ (x, b) whenever x 6= 0. Show that X is
locally Euclidean and second countable, but not Hausdorff. Hence, it is not a manifold.

2. Properties of topological manifolds

Recall that an open set U of a topological space X is precompact if its closure is compact.
The following Lemma is fundamental and important.

Lemma 2.1. Every topological manifold has a countable basis of precompact coordinate balls.

Proof. Step 1: Show this for each coordinate chart. Let (φ,U) be a coordinate chart. For each pair x ∈ φ(U), r ∈
Q such that Br(x) ⊂ φ(U), we consider the coordinate ball φ−1(Br(U)). These are clearly precompact in U ,
since φ is a homeomorphism. Their closure in U is the same as their closure in M , since M is Hausdorff (prove
it!). So they are precompact in M . These coordinate balls form a basis for U , since φ is a homeomorphism.

Step 2: Using second countability, we can cover the manifold with a countable basis of charts. We consider
for each chart the coordinate balls coming from Step 1. The union of all such coordinate balls over all such
charts provides the required basis. �

Corollary 2.2. Manifolds are locally compact: every point admits a neighbourhood that is contained in a
compact subset.

Proof. This follows from Lemma 2.1, since coordinate balls are precompact. �
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A topological space is connected if there do not exist disjoint open sets whose cover is X. It is path connected
if any pair of points can be joined by a path. It is locally path connected, if it has a basis of path connected
open sets.

Proposition 2.3. Let M be a topological manifold. Then the following hold:

(1) M is locally path connected.
(2) M is path connected if and only if it is connected.
(3) The components are the same as the path components.
(4) M has countably many components, each of which is open in M and a connected topological manifold.

Proof. Use Lemma 2.1. Proof in class. �

A topological space is said to be paracompact, if every open covering admits a locally finite subcovering: this
means that for each point, only finitely many open sets in the subcovering contain the point.


