Prof. George Candea
School of Computer & Communication Sciences

-
- ~
- “a

T 4
L 3
o’ s
P
s

A group of interconnected ! . Environment
components that exhibits
an expected collective
behavior observed at the
interfaces with its
environment.

Examples of Systems

o Examples of systems
* asmartphone or tablet
o the Internet
* ticket reservation system
* shared calendaring system
* airtraffic control
* ane-commerce Site
* smart home
o self-driving cars

George Candea Principles of Computer Systems 4

George Candea Principles of Computer Systems 5

George Candea Principles of Computer Systems 6

What Is A Computer System 2

o Three parts
* system components
* surrounding environment
* nterface

o Litmus test of good system

e predict system behavior from
component-level behaviors ?

Prof. George Candea
School of Computer & Communication Sciences

GComputer Systems

. . o Asystemis ...
Kl . :. * agroup of interconnected components that exhibits an
! + Environment expected collective behavior observed at the interfaces
' ; with its environment

System .
. . . e (ood system design =
* predict system behavior from component-level behaviors

: * Elemental components are often complex

D D~ t=- \n\eﬁaCe D * acomponent is itself a (sub)system

GComputer Systems

* Asystemis ...

* agroup of interconnected components that exhibits an
expected collective behavior observed at the interfaces
with its environment

* (Good system design =
* predict system behavior from component-level behaviors

* Elemental components are often complex
* acomponentis itself a (sub)system

* Four distinguishing characteristics
emergent properties

propagation of effects
* incommensurate scaling

inevitable trade-offs

#1: Emergent Properties

Properties that are not evident in the components,
but appear when the components are combined.

#2: Propagation of Effects

The transitivity of component interconnections causes a local
phenomenon to propagate to large parts of the system.

#3: Incommensurate Scaling

As a system increases in size or speed, different parts scale
unequally, causing the system as a whole to stop working.

* Reason
o Scalability of each component is described by a function

* The order of these functions is not the same for each
component = as system grows, components scale

disproportionally to each other

N

=

#3: Incommensurate Scaling

As a system increases in size or speed, different parts scale
unequally, causing the system as a whole to stop working.

* Reason
o Scalability of each component is described by a function

* The order of these functions is not the same for each
component = as system grows, components scale

disproportionally to each other

N

#4: Trade-0ffs

Designing a system consists of trading off properties against
each other so as to maximize the system'’s overall utility.

* every system property has a utility curve
* agiven design ties utility curves to each other

* configurations, implementations, and inputs each fix a
point along the utility curve

L L : 1

Quality [%] ! Availability [%] P i Security [EAL]
0 100 0 98 100 0 1 2 3 4 5 6 7

LN g 1

Max. Latency [sec] Min. Throughput [ops/sec] TCO [$/yean]

0 1000 2000

* Four characteristics
* emergent properties
* propagation of effects
* jncommensurate scaling
* Inevitable trade-offs

o Synthesize a system from requirements

* Road ahead:
* representations, abstractions, and design ideas
* combat the ad-hoc nature of system design
* take a principled approach to the design process

The Complexity Challenge

Prof. George Candea
School of Computer & Communication Sciences

autoShift (int rpm)

if (rpm > 1000)

gear = gear+l
rpm = 0.5*rpm

if (rpm < 700)
gear=0

return

rpm > 1000

rpm < 700

False True

gear=0

return
return

True

gear = gear+l
rpm = 0.5*rpm

rpm < 700

False True
return gear=0
return

rpm=1800
rpm=1200

autoShift (int rpm)
if (rpm > 1000)
gear = gear+l
rpm = 0.5*rpm
if (rpm < 700)
gear=0

return

rpm > 1000

gear = gear+l
rpm = 0.5*rpm

rpm < 700 rpm < 700

False /' \True False/ \Jtue

return gear=0 return gear=0
return return

Software Testing

rpm € {0,350,944,1200,1800}}

autoShift (int rpm) rpm > 1000

if (rpm > 1000)
gear = gear+l

rpm = 0.5*rpm
if (rpm < 700)

gear=0
rpm < 700 rpm < 700

return
False True False True

gear = gear+l
rpm = 0.5*rpm

return gear=0 return gear=0
return return

Software Testing

autoShift (int rpm)
if (rpm > 1000)
gear = gear+l
rpm = 0.5*rpm
if (rpm < 700)
gear=0

return

rpm > 1000

gear = gear+l
rpm = 0.5*rpm

RN rpm < 700

False True False True
return gear=0 return gear=0
return return

paths = 2Pprogram size

Software Testing
paths = 2Pprogram size

>5,000,000 lines of code’ (LOC) = ~2°%0.000 paths

Can we test 2°00900 paths?

o 30 picoseconds/test = 249998 years to finish
o planet Earth is ~2 years old

o 1 bit/test = 249997 Terabytes to store the answer

o Universe contains ~2 266 atoms in total

1 Black Duck Software, Inc. Mozilla Firefox Code Analysis, hitp://www.ohloh.net/p/firefox/analyses/latest

The Complexity Ghallenge

o Testing
* most basic form of software verification
* naive approach does not offer a lot of confidence

o Correct by construction ?

* mathematical view of software engineering

e Proofs of correctness ?

* write code and prove it correct before running it

sources of Gomplexity

Prof. George Candea
School of Computer & Communication Sciences

Software Projects Success Rate = f (Budget)

Budget

More than $10 million
$6 million to $10 million
$3 million to $6 million
$750,000 to $3 million

Less than $750,000

| | I \
0% 10% 20% 30% 40%

George Candea

|
50% Success Rate

Principles of Computer Systems 2

From The CHAOS Reports, The Standish Group International, 1994 - 2009

Many Requirements = Gomplexity

Subjective
complexity

Number of
requirements

Many Requirements = Gomplexity

Subjective
complexity

Number of
requirements

Quest for Efficiency = Complexity

Complexity

Desired efficiency

Quest for Efficiency = Complexity

Complexity
A

» Desired efficiency

Quest for Efficiency = Complexity

Complexity
A

» Desired efficiency

[Buffer cache

Quest for Efficiency = Complexity

Complexity
A

» Desired efficiency

Writeback buffer cache

Quest for Efficiency = Complexity

Complexity
A

> Desired efficiency @fs yn C()

{ Writeback buffer cache J

System Evolution = Complexity

Complexity

_ System
lifetime

e (Changes in requirements
* same system design, different environments
* ysers want new things, but replacing the system is costly

o Changes to address these = Evolution

* changes introduce complexity

Legacy Systems = Complex Systems

Android codebase size

(in millions of lines, over its first 4 years)

5.0

- C++

va
- HTML
25
o

2009 2010 201 2012

o Evolution
* s aprocess of satisfying new requirements
* successful systems evolve fast

sources of Gomplexity

o Exponential path/state explosion
e Large number of requirements

* Quest for high efficiency

o System evolution

symptoms of Gomplexity

Prof. George Candea
School of Computer & Communication Sciences

A COMPUTER SCIENCE PERSPECTIVE

OF BRIDGE DESIGN

What kinds of lessons does a classical engineering discipline like bridge
design have for an emerging engineering discipline like computer systems
design? Case-study editors Alfred Spector and David Gifford consider the
insight and experience of bridge designer Gerard Fox to find out how strong

the parallels are.

ALFRED SPECTOR and DAVID GIFFORD

AS Gerry, let's begin with an overview of
bridges.

GF In the United States, most highway bridges are
mandated by a government agency. The great major-
ity are small bridges (with spans of less than 150
feet) and are part of the public highway system.
There are fewer large bridges, having spans of 600
feet ar more, that carry roads over bodies of water,
gorges, or other large obstacles. There are also a
small number of superlarge bridges with spans ap-
proaching a mile, like the Verrazzano Narrows
Bridge in New York.

AS What are the requirements for a bridge?

GF There are several categories of requirements.
For instance, there are functionality requirements:
The lanes should be sufficiently wide, the bridge
should have safe barriers to deflect cars back onto
the roadway, and the lighting should be sufficient.
There are serviceability requirements: We don’t want
the bridge to vibrate excessively and scare people,
and we don't want large cracks in concrete bridges.
Of course, there is the ultimate strength requirement:
We don't want the bridge to fail. Then there is an
aesthetics requirement: The bridge should be pleas-
ing to the eye. There’s also a long-term maintainability
requirement, which involves corrosion protection of
various elements. For example, cables tend to be
very susceptible to stress corrosion, and therefore
their protection is very important. Finally, there is
the cost-effectiveness requirement: The finished prod-
uct should meet all of the above requirements at the
best possible cost.

@ 1986 ACM 0001-0782,/86/1K00-0268 75¢

Communications of the ACM

THE DESIGN PROCESS

AS What is the procedure for designing and con-
structing a bridge?

GF It breaks down into three phases: the prelimi-
nary design phase, the main design phase, and the
construction phase. For larger bridges, several alter-
native designs are usually considered during the
preliminary design phase, whereas simple calcula-
tions or experience usually suffices in determining
the appropriate design for small bridges. There are a
lot more factors to take into account with a large
bridge: aesthetics, method of construction, cost of
materials, etc. The preliminary design report for a
large bridge usually describes three or four alterna-
tive bridge types, estimates their costs, and provides
a rendering of what the bridge will look like. Usu-
ally, the designer recommends one of the alterna-
tives to the client. There would also usually be hear-
ings to get the public's reaction.

DG Do you estimate both the initial cost and the
life-cycle cost for each of the alternatives?

GF Life-cycle costing is not in wide use for bridges,
although I think it should be. For example, consider
the life-cycle cost of a bridge’s deck, the portion of
the bridge that comprises the riding surface. One
alternative is to design an orthotropic steel deck,
which can support traffic and also help to carry the
weight of the bridge itself. The alternative is a con-
crete slab deck, which costs a lot less initially, but
does not last nearly as long as a steel deck. Since the
initial cost is the primary thing that clients look at
today, most new bridges in this country are being
built with concrete decks. At the same time, many

April 1986 Volume 29 Number 4

Observation
bridges are normally on-time, on-budget, and don’t fall

software projects rarely ship on-time, are often over-
budget, and rarely work exactly as specified

Blueprints for bridges must be approved...

for structural integrity, earthquake and flood safety, etc.

Foundations are inspected
you don'’t just build a pillar and test if it stands

Fundamental difference:;
laws of physics vs. laws of human intellect ...

Four Symptoms of Complexity

-
¢' RS
P L 3
PN 5
Y 4

Y4

‘---'

*~ . nterface”

Environment D

Large number of components
Large number of interconnections
Many irregularities and exceptions
High “Kolmogorov complexity”

symptom #1: Many Gomponents

Symptom #2: Many Interconnections

George Candea

Principles of Computer Systems

http://www.toofishes.net/blog/arch-package-visualization/

symptom #2

perl-@-lite

gﬁw ilsimsa

erl-dig

an

ey

2,

Al
o,

& /e
\ 2

4 \\.\ :\ v,
iy
4

symptom #3

Jou'spunoibyoeg-siaded)em mmm/:diy pue woo swniswesp//:dny woy sabew)

symptom #4: High “Kolmogorov Gomplexity”

IAAAAAAA ... AAAAB| = 10°%+1

K(AAAAAAA ... AAAAB) =
“1 million As followed by 1 B"] ¢ Kolmogorov complexity

: * computation resources needed to specify an object
= simple

* minimal length of a description of the object
o JK(object) >= |object| => complex
IABDAGHDBBCAD...| = 105+1 K (object) << |object| => simple

K(ABDAGHDBBCAD...) = 106+1
= complex

symptoms of Complexity

* Four symptoms of complexity
* large number of components
* large number of interconnections
* many irreqularities and exceptions
* high “Kolmogorov complexity”

Modularity

Prof. George Candea
School of Computer & Communication Sciences

symptoms of Gomplexity (Recap)

e Large number of components

e Large number of interconnections

e = small disturbance can have chaotic consequences

I (object) >= |object| => complex
I (object) << |object| => simple

* High Kolmogorov complexity

" : * = large # of brains required to understand the whole
* |rregularities and exceptions

George Candea Principles of Computer Systems 3

MAINOOOl1l* PROGRAM TO SOLVE THE QUADRATIC EQUATION

MAINOOO2
MAINOOO3
MAINOOO4
MAINOOOS
MAINOOO6
MAINOOO7
MAINOOOS
MAINOOO9
MAINOO10
MAINOO1l1
MAINOO12
MAINOO13
MAINOO14
MAINOO15
MAINOO16
MAINOO17
MAINOO18
MAINOO19
MAINO0O020
MAINOO21
MAINO0O022

NEGA

ZERO

POST

FINISH
10
11

21
31

READ 10,A,B,C $
DISC = B*B-4*A*C $
IF (DISC) NEGA,ZERO,POSI $

R=0.0-0.5* B/A S

AI = 0.5 * SQRTF(0.0-DISC)/A $
PRINT 11,R,AI $

GO TO FINISH $

R=0.0-0.5* B/A S

PRINT 21,R $

GO TO FINISH $

SD = SQRTF(DISC) $

R1 = 0.5*(SD-B)/A $

R2 = 0.5%(0.0-(B+SD))/A $

PRINT 31,R2,R1 $

STOP $

FORMAT(3F12.5) $

FORMAT(19H TWO COMPLEX ROOTS:,
F12.5, 2H I) $

FORMAT(15H ONE REAL ROOT:, F12.5) $

FORMAT(16H TWO REAL ROOTS:,
END $

Fl12.5,

5H AND

14

F12.5,14H PLUS OR MINUS,

F12.5) $

structured Programming

The competent programmer is fully aware of
the strictly limited size of his own skull and
therefore approaches the programming task
in full humility.

Edsger Dijkstra

EWD249

NOTES ON STRUCTURED PROGRAMMING
by

prof.dr.Edsger W.Dijkstra

* Three basic constructs
* single-entry / single-exit control constructs
* sequence, selection, iteration

e Structured program
* ordered, disciplined, doesn't jump around unpredictably

ugust 1969 * can read easily and reason about = higher quality

............................... .
. s
' l '
' '
' '

statement| -

.Sequence block

.. Jteration block

statement

statement

_..Selection block

Three basic constructs

* single-entry / single-exit control constructs
* sequence, selection, iteration
Structured program

* ordered, disciplined, doesn't jump around unpredictably
* can read easily and reason about = higher quality

static int fops_u8_open(struct inode *inode, struct file *file)

fs/debugfs/file.c ¢ oul):

__simple_attr_check_format(
return simple_attr_open(inode, file, debugfs_u8_get, debugfs_u8_set,

}
static const struct file_operations fops_u8 = {

.owner = THIS_MODULE,

.open = fops_u8_open,

.release = simple_attr_release,

.read = simple_attr_read,

write = simple_attr_write,

.llseek = generic_file_llseek,
3
static int fops_u8_ro_open(struct inode *inode, struct file *file)
{

__simple_attr_check_format(, 0ull);

return simple_attr_open(inode, file, debugfs_u8_get, NULL, DR
}
static const struct file_operations fops_u8_ro = {

.owner = THIS_MODULE,

.open = fops_u8_ro_open,

.release = simple_attr_release,

.read = simple_attr_read,

.write = simple_attr_write,

.llseek = generic_file_llseek,
3
static int fops_u8_wo_open(struct inode *inode, struct file *file)
{

__simple_attr_check_format(, 0ull);

return simple_attr_open(inode, file, NULL, debugfs_u8_set,);
}
static const struct file_operations fops_u8_wo = {

.owner = THIS_MODULE,

.open = fops_u8_wo_open,

.release = simple_attr_release,

.read = simple_attr_read,

.write = simple_attr_write,

.1lseek = generic_file_llseek,

¥

static int fops_u8_open(struct inode *inode, struct file *file)

. {
fS/debung/flle .C __simple_attr_check_format(, 0ull);
return simple_attr_open(inode, file, debugfs_u8_get, debugfs_u8_set,
3
static const struct file_operations fops_u8 = {
.owner = THIS_MODULE,
.open = fops_u8_open,

DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)
static int __fops ## _open(struct inode *inode, struct file *file)
{

__simple_attr_check_format(__fmt, Qull);

return simple_attr_open(inode, file, __get, set, __fmt);

}

static const struct file_operations __fops = {

.owner = THIS_MODULE,

.open = __fops ## _open,
.release = simple_attr_release,
.read = simple_attr_read,
.write = simple_attr_write,
.llseek = generic_file_llseek,

s

I
static const struct file_operations fops_u8_wo = {

.owner THIS_MODULE,

.open fops_u8_wo_open,
.release = simple_attr_release,
.read = simple_attr_read,
.write = simple_attr_write,
.1lseek = generic_file_llseek,

3

VOO A A A A A A G A A A

)

static

{

}

static

1
static

{

3

static

1
static

{

3

static

1

int fops_u8_open(struct inode *inode, struct file *file)

__simple_attr_check_format("%11u\n", Qull);
return simple_attr_open(inode, file, debugfs_u8_get, debugfs_u8_set, "%11lu\n");

. . #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \

const struct flle—Oper'atlonS FOPS—Ug = { static int __fops ## _open(struct inode *inode, struct file *file) \

.owner = THIS_MODULE, { \

- f 8 __simple_attr_check_format(__fmt, Qull); \

-open = Tops_us_open, return simple_attr_open(inode, file, __get, __set, __fmt); \

.release = simple_attr_release, } \

_ . static const struct file_operations __fops = { \

-"e9d - stple_attP_regd, .owner = THIS_MODULE, \

write = simple_attr_write, .open = __fops ## _open, \

.1lseek = generic_file_llseek’ .release = simple_attr_release, \

.read = simple_attr_read, \

write = simple_attr_write, \

int fops_u8_ro_open(struct inode *inode, struct file *file) .llseek = generic_file_llseek, \
b

__simple_attr_check_format("%lLlu\n", @Qull);
return simple_attr_open(inode, file, debugfs_u8_get, NULL, "%Llu\n");

const struct file_operations fops_u8_ro = {
.owner = THIS_MODULE,

.open = fops_u8_ro_open,
.release = simple_attr_release,
.read = simple_attr_read,
.write = simple_attr_write,

.llseek = generic_file_llseek,

int fops_u8_wo_open(struct inode *inode, struct file *file)

__simple_attr_check_format("%1L1lu\n", Qull);
return simple_attr_open(inode, file, NULL, debugfs_u8_set, "%Llu\n");

const struct file_operations fops_u8_wo = {

.owner = THIS_MODULE,

.open = fops_u8_wo_open,
.release = simple_attr_release,
.read = simple_attr_read,
.write = simple_attr_write,
.11seek = generic_file_llseek,

DEFINE_SIMPLE_ATTRIBUTE(fops_u8, debugfs_u8_get, debugfs_u8_set, "%lLlu\n");
DEFINE_SIMPLE_ATTRIBUTE(fops_u8_ro, debugfs_u8_get, NULL, "%Llu\n");
DEFINE_SIMPLE_ATTRIBUTE(fops_u8_wo, NULL, debugfs_u8_set, "%llu\n");

Modularity Through Virtualization

e Server consolidation

* Reduce operating costs
* Reduce management costs

¢ (Cloud computing
* On-demand VM provisioning
* VM migration
o VM replication

Modularity Outside Computer Science

* Cell = module used to build organisms
e (Gene = unit (module) of evolution

* Cognitive activity (may be) modularized
 Division of labor = modularization

* Spare parts = modules

o |KEA ... modular furniture

Modularity Outside Computer Science

* Cell = module used to build organisms
e (Gene = unit (module) of evolution

* Cognitive activity (may be) modularized
 Division of labor = modularization

* Spare parts = modules

o |KEA ... modular furniture

Modularity Outside Computer Science

* Cell = module used to build organisms
e (Gene = unit (module) of evolution

* Cognitive activity (may be) modularized
 Division of labor = modularization

* Spare parts = modules

o |KEA ... modular furniture

Modularity Outside Computer Science

* Cell = module used to build organisms
e (Gene = unit (module) of evolution

* Cognitive activity (may be) modularized
 Division of labor = modularization

* Spare parts = modules

o |KEA ... modular furniture

Modularity Outside Computer Science

* Cell = module used to build organisms
e (Gene = unit (module) of evolution

* Cognitive activity (may be) modularized
 Division of labor = modularization

* Spare parts = modules

o |KEA ... modular furniture

Prof. George Candea
School of Computer & Communication Sciences

Modularity (Recap)

Modularity (Recap)

WHAT o Abstraction

o specifies “what” a component/subsystem does

H O W o together with modularity, it separates “what” from “how”

Examples of Abstractions in Operating Systems

* Virtual address space
* Process

* Pipe

* Filesystem

* Routines
* function, procedure, thread, efc.

e Lambda functions

* a.k.a. anonymous functions
o Abstract data types
* Objects
o Duck typing

* Routines
* function, procedure, thread, efc.

e Lambda functions

* a.k.a. anonymous functions
o Abstract data types
* Objects
o Duck typing

* Routines
* function, procedure, thread, efc.

e Lambda functions

* a.k.a. anonymous functions
o Abstract data types
* Objects
o Duck typing

* Routines
* function, procedure, thread, efc.

e Lambda functions

* a.k.a. anonymous functions
o Abstract data types
* Objects
o Duck typing

* Routines
* function, procedure, thread, efc.

e Lambda functions

* a.k.a. anonymous functions
o Abstract data types
* Objects
o Duck typing

