
Homework 0
Network Programming in GO

CS-438 - Decentralized Systems Engineering, Fall 2020

Publish date: Friday, September 18, 2020
Due date: Tuesday, October 6, 2020 @ 23:55

General Guidelines to the Course Homeworks
In this course, you will build a peer-to-peer application in the Go programming language
called Peerster . With every homework, Peerster’s functionality will become richer, starting
with a simple and imperfect message broadcast, to gossip messaging, routing for one-to-one
communication, file sharing à la BitTorrent, and finishing with an implementation to reach
consensus on file names.

We will specify the functionality and protocol your application needs to implement, along with
some implementation hints and pointers to relevant information, but in this and all other
homeworks in the course you will ultimately be responsible for gathering all the necessary
information and figuring out how to implement what you need to implement – just as you will
need to do in the industry or research programming jobs. Since everyone in the class will be
developing an application that is supposed to “speak” the same protocol, your application
should – and will be expected to – interoperate with the implementations built by the other
course participants.

For each homework, we will provide you with the skeleton files that contain the main
interfaces to be implemented, test framework, and some useful functionality and
implementation hints.

Throughout this development and debugging process, you are welcome to discuss
challenges and techniques with your fellow students, exchange pointers to relevant
information or algorithms, debugging tips, etc., provided you each write your own code
independently . Homeworks are individual per student.

Teaching assistants will be available in room INJ 218 every Friday 15:15-17:00, to discuss
with you how to architect your implementation. TAs are not going to debug your code , but
they can help you ask the right questions just like your software engineer colleagues will do
in the future. Room INF 1 is available every Monday from 13:15 to 15:00 for you to hack
together and test your implementations, without TA supervision.

Inter-homework Dependencies
Every homework builds on the previous one and requires a full and working implementation
of the previous homework. Thus, we strongly encourage you to fully implement every
homework. However, if it so happens that: (1) you were unable to complete a homework, or
(2) you fully implemented your homework but the poor code design makes it hard for you to
build on top, we offer you an alternative. After each homework, you will receive 3 random
anonymized submissions of your colleagues that you need to review (your reviews will be
graded), and can choose to build on top of any of these 3 assignments for your next
homework. If you decide to do so, you need to specify that homework’s identifier (more
instructions will be given in HW 1).

However, be warned that there is no guarantee regarding the quality of these 3
randomly assigned submissions - they might be less good than your own
implementation. Your best strategy, thus, is still to complete the homeworks yourself.

Workload
This is a systems building course and you are expected to deliver a working system. On
average, we aim for you to spend about 3-10 hours per week on homeworks / project. It is,
however, difficult to assess how time consuming bugs or concurrency issues will prove to be
for each individual.

Prerequisites
If you are not familiar with Go, we suggest you first complete the Tour of Go tutorial .

Introduction
One core challenge in decentralized systems is ensuring efficient and scalable network
communication. In this course, you will learn techniques to address this challenge and this
homework takes a very first step in that direction. By the end of homework 0, peers will be
able to broadcast messages through the network, albeit in an imperfect way. Indeed,
messages can be lost or can loop around the network indefinitely, but that’s ok, because
you’ll have the opportunity to fix this unreliable and inefficient broadcast in Homework 1. For
now, the goal of this assignment is to get you familiar with Go in general and Go networking
in particular.

Peerster Design
Peerster is a decentralized application, where several nodes, referred to as gossipers ,
communicate with each other. Each Gossiper implements the functionality for network
communication. A Gossiper communicates with:

https://tour.golang.org/welcome/1

1) A client application over TCP (Transport Control Protocol). The client runs on the same
machine as the gossiper.
2) Other Gossipers over UDP (User Datagram Protocol). These gossipers run on other
machines, but for testing purposes you can also spawn local ones.

The Gossiper exposes an API to web-based clients that enables a client to:

1) Send messages to the local gossiper
2) Retrieve received messages from the local gossiper
3) Add Gossiper identifier for the local gossiper
4) Retrieve Gossiper Identifier from the local gossiper
5) Add connection details of another Gossiper
6) Receive connection details about other Gossipers

The CLI client is simpler than the web-based one; it can only send messages to the local
gossiper.

The Gossiper listens to two transport layer ports: 1) UIPort and 2) GossipPort.
Communication between the client and the Gossiper uses the UIport, whereas the
communication between the Gossiper and other Gossipers uses the GossipPort. Figure 1
depicts this design.

Figure 1

Your task
In this homework you will build the gossiper and the command line interface (CLI) client. We
provide you with a web-based client, which you can use to test your Gossiper.

Network Programming in Go
Gossipers communicate with each other over UDP. You can use Go’s networking library .
Your Gossiper program takes the following as the arguments.

https://golang.org/pkg/net/

1. The UIPort
2. The GossipIP:GossipPort (if you run in the localhost, GossipIP is 127.0.0.1)
3. Name (name of the node)
4. List of one or more connection details of other gossipers, in the form

ip1:port1,ip2:port2 ,etc (note that list elements are separated by a comma).

You must follow this input format in order to comply with automatic testing, otherwise
tests will fail.

Below is an example of how to run a compiled gossiper

./peerster -UIPort=10000 -gossipAddr=127.0.0.1:5000 -name=nodeA

 -peers=127.0.0.1:5001,10.1.1.7:5002

Clients talk to gossipers over TCP. You can use Go’s networking library . Your local CLI
client program takes two arguments:

1. UIPort which is the port on which the gossiper listens for the messages that are
sent by the client

2. msg which is the message sent to the gossiper. The msg is a JSON-encoded
message (not plain text), described in the next section.

Following is how a compiled client sends a message to the gossiper.

./client -UIPort=10000 -msg=Hello

Message formats

● Client to Gossiper message format

JSON format: {contents:<value>}

ClientMessage is the go struct that is used for Client to Gossiper communication,
already defined in the code skeleton.

● Gossiper to Gossiper message format

JSON format: {originPeerName:<value>, relayPeerAddr:<value>,
contents:<value>}

SimpleMessage is the structure of the messages that is used for Gossiper to
Gossiper messaging, already defined in the code skeleton.

https://golang.org/pkg/net/

Moreover, we define a GossipPacket , the ONLY type of packets sent to other
peers. In next homework, we will add other message types to it but for now it may
only contain a SimpleMessage .

Message forwarding logic
We illustrate the message forwarding logic as follows.

When a gossiper receives a message (in simple broadcast mode, which is the only mode
in this homework):

- If it comes from a client, the gossiper sends the message to all known peers, sets
the “origin peer name” field of the message to its own name and sets the
“relay peer” field to its own address

- If it comes from another peer A, the gossiper (1) stores A’s address from the “relay
peer” field in its list of known peers, (2) changes the “relay peer” field to its own
address , and (3) sends the message to all known peers besides peer A, leaving
the “origin peer name” field unchanged

For message processing, the code skeleton that we provide enables you to register
handlers. A handler is a function that can process a certain type of message. For each
message type the Gossiper receives from other Gossipers (SimpleMessage in this
homework), you should register a handler. In this homework, your task is to write the handler
to process a SimpleMessage type. The handler must be called Exec and it is defined on
the SimpleMessage struct. The signature of the handler is already in the code skeleton.

Printing format in the standard output

Your gossiper program should write at standard output, every time it receives a
SimpleMessage , two lines:

- The first line should be:

- SIMPLE MESSAGE origin <original_sender_name> from
<relay_addr> contents <msg_text> when the message comes from
another peer, relay_addr being the ip:port of the relay.

or

- CLIENT MESSAGE <msg_text> when the message comes from a
client.

- The second line contains the addresses of all known peers, including those
given when initializing the node, in the form PEERS ip1:port1,ip2:port2,etc

Serializing and Deserializing Messages
Because nodes that communicate may run on different architectures and operating systems,
we need to serialize (or marshall) messages before sending them over the network, which
means we need to first convert the message to an architecture-independent format. Also
upon receiving a message, the node should deserialize the message, before processing. For
serializing and deserializing, you will use JSON, a standard approach for encoding
messages on the internet. Go provides a library for JSON encoding .

How to manually test your program
Run multiple instances of the program on your local machine (use 127.0.0.1 as the IP with
different ports) and check that you can send messages, and that the other peers receive
them at standard output. Also, check that you store the addresses of peers that you receive
messages from.

Automatic testing through GitLab
We will use GitLab for testing. Each of you will be provided with a GitLab repository that you
can access with your credentials for gitlab.epfl.ch . The CI (continuous integration) tool will
automatically run tests every time you push your code in the repo. For your convenience in
implementation, you can inspect the tests and change them to debug your program. Unit
tests are already available and integration tests will be available soon.

We will provide you with the basic code structure with interfaces, on top of which you can
write your code. In order for your code to work with the testing infrastructure, we strongly
advise you not to change the project structure .

Hand-in Procedure and Grading
For each homework, you will receive a grade out of 6. To be considered for receiving full
points (max. 6), you must upload and submit your fully-working code on Moodle (simply as a
collection of source files) by the due date, which you can find at the beginning of each
homework assignment document. You can always update your submission on moodle
until the deadline, so please start submitting early. Late submissions are not possible.

We will grade your solutions via a combination of automatic testing, code inspection, and
code plagiarism detection. We will run automated tests on your application and make sure it
works as required, both when communicating with other instances of itself (unit tests) and
when communicating with our own instances (integration tests). You will be provided with the
test framework, so that you can test your code yourself before submitting. Unless otherwise
specified, the tests assume a full implementation of the homework. If you implement only
parts of a homework, we cannot guarantee there will be tests for that particular functionality
that would give you points for it.

https://golang.org/pkg/encoding/json/
https://gitlab.epfl.ch/

For the actual grading, we will use the same tests but with different input data so only the
implementations that correctly implement all the functionality will pass. We will also use a
few hidden tests that test the scalability of your implementation in a large system (e.g., 20
nodes). Thus, your implementation must be reasonably efficient , e.g., by processing
messages in parallel instead of one-at-a-time. We strongly encourage you to test your
implementation with the implementations of your classmates by having them communicate
with each other.

Our very first test is that your code must compile when go build is executed on your files. No
points will be given if your code does not compile.

We will not dock points merely for stylistic deficiencies or ugly hacks—although we strongly
encourage you to keep your code clean and maintainable, because you will most likely be
building on it throughout the semester, and design flaws that you manage to work around in
one lab may well come back to bite you in the next.

-------------------------------------This completes the homework---

