
LECTURE 2

YASH LODHA

1. Smooth manifolds

A topological manifold manifold is called a smooth manifold, if it is endowed with the following additional
structure.

Definition 1.1. (Smooth manifold) Let M be a topological n-manifold. Two charts (φ1, U1), (φ2, U2) are said
to be smoothly compatible if the maps

φ1 ◦ φ−12 : φ2(U1 ∩ U2)→ φ1(U1 ∩ U2) φ2 ◦ φ−11 : φ1(U1 ∩ U2)→ φ2(U1 ∩ U2)

are smooth maps (i.e. C∞). A smooth atlas is a family of charts that are smoothly compatible, and that cover
M . A smooth atlas is called maximal, if it is not contained in a strictly larger smooth atlas. A maximal smooth
atlas is called a smooth structure on M . A smooth manifold is a topological manifold endowed with a smooth
structure. The charts in the smooth structure are called smooth charts.

Proposition 1.2. Every smooth atlas can be extended uniquely to a maximal smooth atlas.

Proof. Let M be a topological manifold, and let A1 be a smooth atlas. Let A be a family of charts that contains
each chart in A1, and moreover contains each chart which is smoothly compatible with each chart in A1. We
claim that A is a smooth atlas. The fact that it is unique and maximal follows immediately from the definition
of A.

Let (φ1, U1), (φ2, U2) be charts in A. We need to show that for each x ∈ φ2(U1 ∩ U2), the map

φ1 ◦ φ−12 : φ2(U1 ∩ U2)→ φ1(U1 ∩ U2)

is smooth at x. Let (ν, V ) be a chart in A1 such that φ−12 (x) ∈ (V ).
Since φ1◦ν−1, ν◦φ−12 are smooth on their domains of definition, so is their composition which equals φ1◦φ−12 .

This proves the Proposition. �

The smooth structure A above is said to be generated by the smooth atlas A1. In practise, maximality of the
structure is usually not that important.

Example 1.3. (1) Any manifold with only one chart, for instance Rn or a graph of a continuous function,
is a smooth manifold.

(2) The sphere and the projective plane from the previous lecture are also smooth manifolds.

Definition 1.4. (Smooth maps) Let M,N be smooth manifolds. A map F : M → N is a smooth map if for
each point x ∈M , there is a pair of smooth charts (φ1, U1) for M and (φ2, U2) for N , such that

x ∈ U1 F (U1) ⊂ U2

and the map

F̂ = φ2 ◦ F ◦ φ−11 : φ1(U1)→ φ2(U2)

is a smooth map. The map F̂ is called a coordinate representation of F .
We remark that the condition F (U1) ⊂ U2 is included in the above definition, because this automatically

implies continuity of the map F .

Recall that a topological manifold admits a basis of coordinate balls. In the case of a smooth manifold,
one can similarly prove the existence of a basis of smooth coordinate balls. Let M be a n-dimensional smooth
manifold. We say that a subset U1 ⊂ M and a smooth chart φ1 : U → Rn is a regular coordinate ball, if the
following holds. There is a set U1 ⊂ U2 ⊂M and a smooth chart φ1 : U2 → Rn, and numbers r1 < r2 such that

0 ∈ φ1(U1) ⊂ φ1(U1) ⊂ φ2(U2)

Indeed, we have the following:

Proposition 1.5. Every smooth manifold admits a countable basis of regular coordinate balls.
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Note that every regular coordinate ball is precompact in M .

Example 1.6. (A non-example) Consider the standard chart on R (the identity map), and the chart given by

φ(x) = x3. The transition function id ◦ φ−1 = x
1
3 is not smooth at 0.

Example 1.7. We denote by M(n ×m,R) as the set of n ×m matrices with real entries. This is in natural
bijective correspondence with Rn×m, and hence naturally a smooth manifold. The same for M(n×m,C). We
usually denote M(n× n,R) as M(n,R).

Example 1.8. (Open submanifolds) Let U be an open subset of a smooth manifold M . We define the following
atlas on U :

A = {(V, φ) smooth charts in the smooth atlas for M | V ⊂ U}
Note that since the intersection of a domain of a smooth chart with U , is a smooth chart for U , it is easy to
show that the above is a smooth atlas.

A specific example is the set of invertible matrices GL(n,R), which form an open subset of M(n,R).

Definition 1.9. (Einstein summation convention) Given a sum of monomial terms, we may remove the sum-
mation sign, and interpret the sum as follows. Whenever the same index appears twice in a monomial term,
once as an upper index and once as a lower index, we interpret that the sum is over that index. For example,
we may write

∑
1≤i≤n x

iEi as simply xiEi.

Another aspect of this notion for vector spaces is as follows. We usually write the components as xi, i.e. with
upper indices, and basis vectors as Ei, with lower indices.

Example 1.10. (Linear maps) Let V be an n-dimensional vector space. We endow V with the topology induced
by the inner product. (Actually, the topology is independent of the choice of inner product). Each ordered
basis E1, ..., En for V describes an isomorphism E : Rn → V as

E(x) = xiEi x = (x1, ..., xn)

Note that the above equality follows the Einstein summation convention. For now, we simply drop the summa-
tion sign when the context is clear. Note that (V,E−1) is a chart for V , since E is also a homeomorphism.

Let B1, ..., Bn be another ordered basis, and

B : Rn → V B(x) = xiBi

be the corresponding isomorphism. Then there is an invertible matrix A = (Aij) such that the transition map

B−1 ◦ E(xj) = B−1(xjEj) = (xiA1
i , x

iA2
i , ..., x

iAni ) =
∑

1≤j≤n

(xiAji )Bj

Since the transition maps are smooth, the set of all such isomorphisms defines a smooth structure on V .

Exercise 1.11. Let V1, V2 be finite dimensional vector spaces. Let L(V1, V2) be the set of linear maps from V1
to V2. Describe the natural topology, and smooth structure on this space.

Exercise 1.12. Show that the charts given in the previous lecture for the sphere and the projective plane at
smooth charts. Show the same for products of smooth manifolds, thereby providing a smooth structure on the
Torus.

1.1. Building manifolds from scratch. Note that so far to produce a smooth structure, we have to do a
fair amount of work. First we have to start with a topological manifold, checking along the way that it satisfies
the axioms. Then we endow it with a smooth structure. The following Lemma provides a setup to construct a
smooth manifold in one step.

Lemma 1.13. (Smooth manifold chart Lemma) Let M be a set and let Uα be a collection of subsets of M , Vα
be a collection of open subsets of Rn, for α ∈ I, and bijective maps

fα : Uα → Vα

such that the following are satisfied:

(1) For each α, β ∈ I, the sets fα(Uα ∩ Uβ), fβ(Uα ∩ Uβ) are open.
(2) For each α, β ∈ I, the transition maps

fα ◦ f−1β : fβ(Uα ∩ Uβ)→ fα(Uα ∩ Uβ)

are smooth.
(3) Countably many Uα cover M .
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(4) For any pair of points x, y ∈M , either there is an α ∈ I such that x, y ∈ Uα, or there are α, β ∈ I such
that

Uα ∩ Uβ = ∅ x ∈ Uα, y ∈ Uβ
We define the basis for the topology as the set

{f−1α (B) | α ∈ I,B is an open ball in fα(Uα) = Vα}
Then M has a unique smooth manifold structure with this topology such that each pair (fα, Uα) is a smooth
chart.

Proof. It is easy to check that the topology generated by this basis is Hausdorff. We leave it as an exercise (see
below) that the topology is second countable. We can easily verify that the charts are Locally Euclidean and
smooth. �

Exercise 1.14. Let X be a topological space, and suppose X admits a countable open cover {Ui}i∈I such that
each set Ui is second countable in the subspace topology. Show that X is second countable.

1.2. The Grassmann manifold. So far the constructions of manifolds have been rather straightforward. Now
we shall construct a smooth manifold using the chart lemma, which will be a bit more involved.

Let V be an n-dimensional vector space. We denote by Gk(V ) as the set of k-dimensional linear subspaces
of V . When V is Rn, we simply denote Gk(V ) as Gk,n. Let Q be an (n − k)-dimensional linear subspace of
V . We denote by UQ ⊂ Gk(V ) as the set of k-dimensional linear subspaces of V , i.e. elements of Gk(V ), who
intersection with Q is the zero subspace. These subsets will provide the charts for an application the chart
lemma, via the following.

Lemma 1.15. Let P,Q be linear subspaces of V such that dim(P ) = k, dim(Q) = n− k and V = P ⊕Q. The
k-dimensional linear subspaces of V that have the property that their intersection with Q is the zero subspace,
are precisely the graphs of linear maps P → Q.

Proof. Let F : P → Q be a linear map. It is clear that the graph of the linear map satisfies the required
property. To see the converse, note that if U is a k-dimensional linear subspace of V with the property that
its intersection with Q is the zero subspace, the projections of πP : U → P and πQ : U → Q induce a well
define linear map F : P → Q defined as follows. The projection πP : U → P must be an isomorphism, or
else the kernel will have dimension greater than 0, and since the kernel is precisely the intersection with Q,
this is impossible. So it has a well defined inverse isomorphism, which we denote as σP,U : P → U . Then
F = πQ ◦ σP,U and the given subspace is the graph. Checking that the correspondence is bijective is left as an
easy exercise. �

Recall from the previous exercise that

L(P,Q) ∼= M((n− k)× k,R) ∼= Rk(n−k)

and hence has the natural structure of a smooth manifold. We may regard (φQ,UQ) as a coordinate chart for
Gk(V ).

We denote the maps emerging from the Lemma above as

φQ : UQ → L(P,Q) ΓQ : L(P,Q)→ UQ
and we fix the isomorphism σP,U : P → U as the inverse of the projection map πP : U → P , whenever P⊕Q = V
and Q∩U is the zero subspace. Finally, given H ∈ L(P,Q), the corresponding graph of H is Γ(H) = H(v) + v.

Lemma 1.16. Let V = P1 ⊕Q1 = P2 ⊕Q2 where P1, P2 are k-dimensional linear subspaces. Let (φQi ,UQi) be
the charts, as above. Then

V1 = φQ1
(UQ1

∩ UQ2
) V2 = φQ2

(UQ1
∩ UQ2

)

are open in L(P1, Q1), L(P2, Q2) respectively. And the transition map

φQ2 ◦ φ−1Q1
: φQ1(UQ1 ∩ UQ2)→ φQ2(UQ1 ∩ UQ2)

is smooth.

Proof. Note that V1 consists of precisely the elements F ∈ L(P1, Q1) whose graphs have trivial intersection with
Q2. This is true for F if and only if πP2

◦H has trivial kernel, where

H(v) = v + F (v), v ∈ P1

is the corresponding graph of F . In turn, this is true if and only if the matrix of the linear map πP2
◦ H is

invertible, and has determinant nonzero. Since πP2
◦H depends continuously on F , we obtain that V1 is open

in L(P1, Q1). The same follows for V2 by the symmetric argument.
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Now we will show that the transition maps are smooth. Let

X1 ∈ φQ1
(UQ1

∩ UQ2
) X2 = φQ2

◦ φ−1Q1
(X1)

Note that

X1 : P1 → Q1 X2 : P2 → Q2

are linear maps. Let

U1 = X1(v) + v v ∈ P1

be the graph of X1. Then

X2 = πQ2
◦ (πP2

� U1)−1 = (πQ2
◦ σP1,U1

) ◦ (πP2
◦ σP1,U1

)−1

Finally, we finish by showing that each of the maps

(πQ2
◦ σP1,U1

) : P1 → Q2

(πP2
◦ σP1,U1

) : P1 → P2

are compositions of linear maps, i.e.

(πQ2
◦ σP1,U1

)v = (A+ CX1)v (πP2
◦ σP1,U1

)v = (B +DX1)v

where A,B,C,D are fixed matrices and X1 is interpreted as an (n − k) × k matrix. Such maps are clearly
smooth with smooth inverses. �

Exercise 1.17. Provide the details of the last paragraph of the previous proof.

Exercise 1.18. Let e1, ..., en be a basis for the vector space V . Show that the sets

{UQJ
| QJ is the subspace spanned by J ⊂ {e1, ..., en}, |J | = n− k}

cover Gk(V ).

Exercise 1.19. Show that each pair of elements of Gk(V ) lie in the chart (φ,Q) for some n − k dimensional
subspace Q of V .

2. Manifolds with boundary

We define the upper half space Hn as

Hn = {(x1, ..., xn) ∈ Rn | xn ≥ 0}

We also define

IntHn = {(x1, ..., xn) ∈ Rn | xn > 0}

δHn = {(x1, ..., xn) ∈ Rn | xn = 0}

Definition 2.1. An n-dimensional topological manifold with boundary is a second countable, Hausdorff space, in
which every point has a neighbourhood that is either homeomorphic to an open subset of Rn, or to a relatively
open subset of Hn. We call the former interior charts and the latter boundary charts.

A point x ∈ M is an interior point if it lies in the domain of an interior chart, and a boundary point if it
lies in the domain of a boundary chart but not in an interior chart. The subset of M consisting of points that
are boundary points is called the boundary of M . The subset of M consisting of interior points in called the
interior of M .

A manifold is called compact if it is compact as a topological space. A manifold is called closed, if it is
compact and without a boundary.

To define a smooth structure on a manifold with boundary, we simply use the following definition of a smooth
function f : U → Rn where U ⊂ Hn. The function f is said to be smooth if it admits a smooth extension to
an open subset of Rn. Using this definition of smoothness, we define smooth charts, atlases and structures in
the usual way.

Generally results about smooth manifolds extend to similar results about smooth manifolds with boundary.
A notable exception is that the result about products of manifolds. Products of manifolds with boundary are
not in general manifolds with boundary.
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3. Partitions of unity

Now we shall define an important tool, which is used frequently to convert local constructions on manifolds,
i.e. ones that use smooth charts, to global ones. (We shall provide some concrete examples of this eventually.)

Definition 3.1. Given a function f : M → R, the support of f , is denoted as

supp(f) = {p ∈M | f(p) 6= 0}
We shall need the following elementary Lemma.

Lemma 3.2. The function

f(t) =

{
e

−1
t t > 0

0 t ≤ 0

is smooth.

Exercise 3.3. Prove the above Lemma.

Definition 3.4. Consider the function

h(t) =
f(2− t)

(f(2− t) + f(t− 1))

One can verify that:

(1) h is smooth.
(2) h(t) = 1 if t ≤ 1.
(3) 0 ≤ h(t) ≤ 1 if 1 ≤ t ≤ 2.
(4) h(t) = 0 if t ≥ 2.

Using h, we construct the following function on Rn.

H : Rn → [0, 1] H(x) = h(|x|)
Note that H is an example of a type of smooth bump function, i.e. it satisfies:

(1) It is smooth.
(2) Its support is contained in B2(0).
(3) It maps B1(0) to 1.

Definition 3.5. (Partitions of unity) Let M be a smooth manifold and let U = {Uα}α∈I be an open cover
(usually consisting of smooth charts) of M . A partition of unity subordinate to U is a collection of smooth
functions

{fα}α∈I fα : M → R

such that:

(1) 0 ≤ fα(x) ≤ 1 for each α ∈ I, x ∈M .
(2) supp(fα) ⊂ Uα.
(3) For each x ∈M there is a neighborhood V of x such that all but finitely many fα vanish on V .
(4)

∑
α∈I fα(x) = 1 for each x ∈M .

Theorem 3.6. For any open cover U of a smooth manifold M , there exists a partition of unity subordinate to
U .

The theorem has a very nice and useful immediate consequence.

Corollary 3.7. Let M be a smooth manifold. Let V be a closed set and U be an open set that contains U .
Then there exists a smooth function f : M → R such that f(x) = 1 whenever x ∈ V , and supp(f) ⊂ U .

Proof. We take a partition of unity subordinate to the open covering {U,M \V }. The function supported in U
has the desired property. �

Definition 3.8. Let M be a smooth manifold and let V be a closed set. A function f : V → R is said to be
smooth if it admits a smooth extension f : U → R, for some open set U containing V .

Corollary 3.9. Let M be a smooth manifold, and let V be a closed subset and a smooth function f : V → R.
Then there is a smooth function g : M → R such that g � V = f .

Proof. By definition, f admits a smooth extension to an open set U containing V . Consider a smooth bump
function h : M → R whose support is in an intermediate open set V ⊂ U ′ ⊂ U , and which is identically 1 on V .
Then g = fh is defined on U , has support in U ′ and obviously smoothly extends as identically 0 on M \U . �


