Climate Economics for Engineers

ENV-724 (Thalmann/Vielle/Vöhringer), Session 1, 23 Sept. 2020

EPFL

Climate Economics OVERVIEW

EPFL

23.09	Economic activity as a source of greenhouse gases, climate scenarios	Frank Vöhringer
30.09	Impacts of climate change: valuation and uncertainty	Philippe Thalmann
07.10	Impacts of climate change: net costs (aggregation, discounting)	Frank Vöhringer
14.10	Adaptation to climate change	Marc Vielle
21.10	Mitigation: abatement measures, cost curves, innovation	Frank Vöhringer
28.10	Cooperation: mitigation as a public good, international climate policy	Frank Vöhringer
04.11	Instruments for climate policy	Philippe Thalmann
11.11	Swiss climate policy	Philippe Thalmann
18.11	Solar radiation management: economics and governance	Frank Vöhringer
02 12		

Climate Economics Overview for today

- round of introductions
- topics for the presentations on December 2nd
- IPCC = Intergovernmental Panel on Climate Change
 - publications and publication process
 - how they deal with uncertainty
 - some statements
- sources of greenhouse gases
- introduction to the mitigation game
- climate scenarios / emissions scenarios

final session

- Dec 2nd
- 12:15-16:00
- 10 minutes presentation + 5 minutes discussion per person

next steps

- Propose a topic by e-mail to frank.voehringer@epfl.ch by Monday, September 28th, noon.
- You will receive feedback on your topic by one of the teachers.
- Provide a draft outline of your presentation by November 3rd the lastest.
- Contact the supervising teachers with any persistent questions or doubts that you may have.

Climate Economics Presentation topics

- You could pick
 - a **country**, and analyse (parts of) its climate policy,
 - a specific climate policy instrument, and analyse how it works and how it is used,
 - a **sector**, and analyse
 - its contribution to climate change, the evolution of its emissions and what is done to curb these, or
 - how it might be affected by climate change and what is done to mitigate these impacts.
- If you write a dissertation related to climate change: You could pick a topic related to your own research.
- We would like to see some diversity among the topics.
- Whatever topic: It has to be a topic in climate economics.

A possible definition of economics:

Economics is a social science concerned with the production, distribution, and consumption of goods and services. It studies **how individuals**, **businesses and governments make choices** about how to allocate resources.

Climate Economics What is an "economic" topic? (2)

- Technological development and the costs of technologies are a relevant aspect in economic analysis, but they are only one of many relevant aspects.
- Costs influence choices, but so do many other things:
 - decision makers' preferences, social norms, risk perceptions, degree of rationality in decision-making, strategic interaction
 - incentives, especially policy instruments (e.g. subsidies, taxes, liability rules and other regulations)
 - information and efficient institutions (or their absence) determine whether any regulation, planned allocation, market mechanism etc.
 will actually work. There are many examples for policies that lack enforcement, especially but not only at the international level.

Climate Economics What is an "economic" topic? (3)

What follows from this?

- focus on decisions and why they are taken
- don't forget the demand side
- distinguish (at least) between producers, regulators and consumers
- differentiate as closely as possible between different institutions and decision makers (who buys? who sells? who decides on regulations at what territorial scope? who enforces them? etc.)
- consider policies and study the way they work including the actual incentives they create and the way these incentives are received
- dive into social science among other things, this requires considering multiple criteria and
 - balancing conflicting arguments

Climate Economics Examples of possible topics

- Countries:
 - The economics of Chinese climate policy.
- Instruments:
 - The Swiss emissions trading system and its interaction with other climate policy instruments.
- Sectors (mitigation):
 - The economics of forest protection.
- Sectors (adaptation):
 - The economics of insurance markets against weather extremes.

Introduction to climate change The IPCC

- IPCC = Intergovernmental Panel on Climate Change
- founded in 1988 by UNEP and WMO, Secretariat in Geneva
- Nobel Peace Prize in 2007
- objective: provide a clear scientific view on the current state of knowledge in climate change and its impacts
- policy-relevant, but not policy-prescriptive
- Working Groups
 - I: scientific aspects of the climate system and climate change
 - II: vulnerability of socio-economic and natural systems to climate change, consequences of climate change, adaptation
 - III: limiting greenhouse gas emissions, other mitigation options
- www.ipcc.ch

Introduction to climate change The IPCC: Main publications

- Assessment reports (1990, 1995, 2001, 2007, 2013/14)
 - By working group + synthesis report
 - Summaries
 - Technical summaries
 - Summaries for policymakers
- Special reports, e.g.
 - Oceans and cryosphere
 - Climate change and land
 - Global warming of 1.5°C
 - Adaptation to extreme events
 - Renewable energy sources
 - Carbon capture and storage
 - Technology transfer
 - Aviation

FP!

Technical papers, background material, presentations

Dr. Frank Vöhringer ENAC IA LEURE frank.voehringer@epfl.ch

incc

Special reports

WG 2

Synthesis

WG 1

WG 3

Introduction to climate change IPCC confidence scale

High agreement	High agreement	High agreement
Limited evidence	Medium evidence	Robust evidence
Medium agreement	Medium agreement	Medium agreement
Limited evidence	Medium evidence	Robust evidence
Low agreement	Low agreement	Low agreement
Limited evidence	Medium evidence	Robust evidence

16

Evidence (type, amount, quality, consistency)

Introduction to climate change IPCC likelihood terminology

Likelihood Terminology	Likelihood of the occurrence/ outcome
Virtually certain	> 99% probability
Extremely likely	> 95% probability
Very likely	> 90% probability
Likely	> 66% probability
More likely than not	> 50% probability
About as likely as not	33 to 66% probability
Unlikely	< 33% probability
Very unlikely	< 10% probability
Extremely unlikely	< 5% probability
Exceptionally unlikely	< 1% probability

EPFL

Introduction to climate change Climate change

 « Warming of the climate system is unequivocal »
 - IPCC 2013

EPFL

Introduction to climate change Climate change forcings

- « It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century»
 - IPCC 2013

Introduction to climate change Climate models and the human influence

Greenhouse gases GHG emission shares in 2010

EPFL

Greenhouse gases Lifetimes and Global Warming Potentials

Industrial Designation			Radiative	Global Warming Potential for Given Time Horizon			
or Common Name (years)	Chemical Formula	Lifetime (years)	Efficiency (W m ⁻² ppb ⁻¹⁾	SAR‡ (100-yr)	20-yr	100-yr	500-yr
Carbon dioxide	CO ₂	See below ^a	^b 1.4x10 ^{−5}	1	1	1	1
Methane ^o	CH ₄	12°	3.7x10-4	21	72	25	7.6
Nitrous oxide	N ₂ O	114	3.03x10-3	310	289	298	153

Source: IPCC

Greenhouse gases Atmospheric concentrations

CO₂

5P5I

N₂O

Source: RAO online based on WMO data

Dr. Frank Vöhringer ENAC IA LEURE frank.voehringer@epfl.ch

CH₄

Industrial Designation			Radiative	Giobal warming Potential for Given Time Horizon			
or Common Name (years)	Chemical Formula	Lifetime (years)	Efficiency (W m ⁻² ppb ⁻¹)	SAR‡ (100-yr)	20-yr	100-yr	500-yr
Carbon dioxide	CO ₂	See below ^a	[▶] 1.4x10 ^{–5}	1	1	1	1
Methanec	CH ₄	12°	3.7x10-4	21	72	25	7.6
Nitrous oxide	N ₂ O	114	3.03x10-3	310	289	298	153
Substances controlled by	y the Montreal Protocol						
CFC-11	CCI ₃ F	45	0.25	3,800	6,730	4,750	1,620
CFC-12	CCI ₂ F ₂	100	0.32	8,100	11,000	10,900	5,200
CFC-13	CCIF ₃	640	0.25		10,800	14,400	16,400
CFC-113	CCI2FCCIF2	85	0.3	4,800	6,540	6,130	2,700
CFC-114	CCIF2CCIF2	300	0.31		8,040	10,000	8,730
CFC-115	CCIF ₂ CF ₃	1,700	0.18		5,310	7,370	9,990
Halon-1301	CBrF ₃	65	0.32	5,400	8,480	7,140	2,760
Halon-1211	CBrCIF ₂	16	0.3		4,750	1,890	575
Halon-2402	CBrF2CBrF2	20	0.33		3,680	1,640	503
Carbon tetrachloride	CCI4	26	0.13	1,400	2,700	1,400	435
Methyl bromide	CH ₃ Br	0.7	0.01		17	5	1
Methyl chloroform	CH3CCI3	5	0.06		506	146	45
HCFC-22	CHCIF ₂	12	0.2	1,500	5,160	1,810	549
HCFC-123	CHCl ₂ CF ₃	1.3	0.14	90	273	77	24
HCFC-124	CHCIFCF3	5.8	0.22	470	2,070	609	185
HCFC-141b	CH3CCI2F	9.3	0.14		2,250	725	220
HCFC-142b	CH3CCIF2	17.9	0.2	1,800	5,490	2,310	705
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	1.9	0.2		429	122	37
HCFC-225cb	CHCIFCF2CCIF2	5.8	0.32		2,030	595	181
Hydrofluorocarbons							
HFC-23	CHF ₃	270	0.19	11,700	12,000	14,800	12,200
HFC-32	CH ₂ F ₂	4.9	0.11	650	2,330	675	205
HFC-125	CHF ₂ CF ₃	29	0.23	2,800	6,350	3,500	1,100
HFC-134a	CH ₂ FCF ₃	14	0.16	1,300	3,830	1,430	435
HFC-143a	CH ₃ CF ₃	52	0.13	3,800	5,890	4,470	1,590
HFC-152a	CH ₃ CHF ₂	1.4	0.09	140	437	124	38
HFC-227ea	CF3CHFCF3	34.2	0.26	2,900	5,310	3,220	1,040
HFC-236fa	CF ₃ CH ₂ CF ₃	240	0.28	6,300	8,100	9,810	7,660
HFC-245fa	CHF2CH2CF3	7.6	0.28		3,380	1030	314
HFC-365mfc	CH ₃ CF ₂ CH ₂ CF ₃	8.6	0.21		2,520	794	241
HFC-43-10mee	CF3CHFCHFCF2CF3	15.9	0.4	1,300	4,140	1,640	500
Perfluorinated compound	ds						
Sulphur hexafluoride	SF ₆	3,200	0.52	23,900	16,300	22,800	32,600
Nitrogen trifluoride	NF ₃	740	0.21		12,300	17,200	20,700
PFC-14	CF ₄	50,000	0.10	6,500	5,210	7,390	11,200
PFC-116	C ₂ F ₆	10,000	0.26	9,200	8,630	12,200	18,200

Source: IPCC

Greenhouse gas emissions Globally by sector

Source: IPCC

Greenhouse gas emissions By major emitting countries (CO₂ only)

Source: Global Carbon Project

Greenhouse gas emissions By national income category and sector

Source: IPCC

Greenhouse gas emissions

By income category (total and per capita)

Greenhouse gas emissions Embodied CO₂

Source: IPCC

Greenhouse gas emissions

EPFL

By region (total and per capita)

* Source: PBL

Greenhouse gas emissions

Drivers (decomposition of changes per decade)

Greenhouse gas emissions By region (1750-2010, CO₂ only)

Source: IPCC

Greenhouse gas emissions CO₂ emission density

EPFL

Climate Economics The Mitigation Game

- players choose nicknames
 - make sure to remain incognito
 - players are allocated to groups A or B by lot
- 1 round per session
 - 10 PolyPesos are available per person per round
 - allocation of the PolyPesos by e-mail to the coordinator
- small (virtual?) prizes
 - chosen in the order of the ranking of private accounts
 - may be destroyed by climate catastrophes (small/large)
- mitigation fund
 - payments into mitigation fund reduce the probability of catastrophes
- regulatory uncertainty (events)

EPFL

Climate Economics The Mitigation Game

5P5I

Climate scenarios Some history

IPCC Special Report on Emissions Scenarios (2000)

- socioeconomic storylines (e.g.: rapid economic growth, sustainability, self-reliance)
- limited usability difficult to apply the complete set of storyline assumptions to other models
- IPCC 5th Assessment Report: RCP scenarios
 - Representative Concentration Pathways
 - broad range of possible climate futures
 - numbered according to radiative forcing in W/m² in 2100
 - more flexible scenario approach
 - compatible emissions scenarios based on IAMs
 - internally consistent set of socioeconomic assumptions, but open to alternative interpretations

Climate scenarios Multi model projections: temperature change

Climate scenarios Global GHG emissions scenarios

Source: IPCC

Climate scenarios

Emissions scenarios: economic drivers

Source: IPCC

Climate scenarios Overshooting

Climate scenarios Emissions scenarios: 1.5°C

Global total net CO2 emissions

Source: IPCC SR 1.5

Non-CO₂ emissions relative to 2010

Emissions of non-CO₂ forcers are also reduced

P1: A scenario in which social, business and technological innovations result in lower energy demand up to 2050 while living standards rise, especially in the global South. A downsized energy system enables rapid decarbonization of energy supply. Afforestation is the only CDR option considered; neither fossil fuels with CCS nor BECCS are used. P2: A scenario with a broad focus on sustainability including energy intensity, human development, economic convergence and international cooperation, as well as shifts towards sustainable and healthy consumption patterns, low-carbon technology innovation, and well-managed land systems with limited societal acceptability for BECCS. P3: A middle-of-the-road scenario in which societal as well as technological development follows historical patterns. Emissions reductions are mainly achieved by changing the way in which energy and products are produced, and to a lesser degree by reductions in demand.

Global indicators	P1	P2	P3	P4	Interquartile range
Pathway classification	No or limited overshoot	No or limited overshoot	No or limited overshoot	Higher overshoot	No or limited overshoo
CO2 emission change in 2030 (% rel to 2010)	-58	-47	-41	4	(-58,-40)
in 2050 (% rel to 2010)	-93	-95	-91	-97	(-107,-94)
Ryata-GHG emissions* in 2030 (% rel to 2010)	-50	-49	-35	-2	(-51,-39)
in 2050 (% rel to 2010)	-82	-89	-78	-80	(-93,-81)
Final energy demand** in 2030 (% rel to 2010)	-15	-5	17	39	(-12,7)
in 2050 (% rel to 2010)	-32	2	21	44	(-11,22)
Renewable share in electricity in 2030 (%)	60	58	48	25	(47,65)
- in 2050 (%)	77	81	63	70	(69,86)
Primary energy from coal in 2030 (% rel to 2010)	-78	-61	-75	-59	(-78, -59)
In 2050 (% rel to 2010)	-97	-77	-73	-97	(-95, -74)
from oil in 2030 (% rel to 2010)	-37	-13	-3	86	(-34,3)
in 2050 (% rel to 2010)	-87	-50	-81	-32	(-78,-31)
from gas in 2030 (% rel to 2010)	-25	-20	33	37	(-26,21)
- in 2050 (% rel to 2010)	-74	-53	21	-48	(-56,6)
from nuclear in 2030 (% rel to 2010)	59	83	98	106	(44,102)
1- in 2050 (% rel to 2010)	150	98	501	468	(91,190)
from biomass in 2030 (% rel to 2010)	-11	0	36	-1	(29,80)
5- in 2050 (% rel to 2010)	-16	49	121	418	(123,261)
from non-biomass renewables in 2030 (% rel to 2010)	430	470	315	110	(245,436)
- in 2050 (% rel to 2010)	833	1327	878	1137	(576,1299)
Cumulative CCS until 2100 (GtCO ₂)	0	348	687	1218	(550,1017)
1-of which BECCS (GtCO2)	0	151	414	1191	(364,662)
Land area of bioenergy crops in 2050 (million km²)	0.2	0.9	2.8	7.2	(1.5,3.2)
Agricultural CH+ emissions in 2030 (% rel to 2010)	-24	-48	1	14	(-30,-11)
in 2050 (% rel to 2010)	-33	-69	-23	2	(-47,-24)
Agricultural N2O emissions in 2030 (% rel to 2010)	5	-26	15	3	(-21,3)
in 2050 (% rel to 2010)	6	-26	0	39	(-26,1)

Source: IPCC SR 1.5

Climate scenarios Emissions scenarios: negative emissions

Source: IPCC

Climate scenarios Multi model projections: precipitation change

Climate scenarios

Sea ice extent (2081-2100, September, northern hemisphere)

Source: IPCC 5AR

Climate scenarios Sea level rise (global average)

A critical point at which a tipping element (a component of the Earth system, at least sub-continental in scale), can be switched – under certain circumstances – into a qualitatively different state

Introduction to climate change Potential tipping elements

2P2L

Lenton et al.

Introduction to climate change

Tipping points

Tipping	Feature of	Control	Critical	Global	Transition	Key
element	system, F	parameter(s), $ ho$	value(s) * , $ ho_{ m crit}$	warming $*^{\dagger}$	timescale * , T	impacts
Greenland	lce volume	Local ΔT_{air}	+~3 °C	+1–2 °C	>300 yr	Sea level
ice sheet (GIS)	(-)				(slow)	+7 m
West Antarctic	lce volume	Local ΔT_{air} ,	$+\sim8^{\circ}C$	+3 − 5 °C	>300 yr	Sea level
ice sheet (WAIS)	(-)	or less ΔT_{ocean}			(slow)	+4–6 m
Atlantic thermohaline	Overturning	Freshwater input	+0.1-0.5 Sv	+3−5 °C	${\sim}100~{ m yr}$	Regional cooling,
circulation (THC)	(-)	to N. Atlantic			(gradual)	sea level, ITCZ shift
El Niño Southern	Amplitude	Thermocline depth,	-	+3−6 °C	${\sim}100~{ m yr}$	Drought in SE Asia
Oscillation (ENSO)	(+)	sharpness in EEP			(gradual)	and elsewhere
Indian summer	Rainfall	Planetary albedo	0.5	-	${\sim}1$ yr	Drought
monsoon (ISM)	(-)	over India			(rapid)	
Sahara/Sahel	Veg. fraction	Precipitation	100 mm/yr	+3 − 5 °C	${\sim}10~{ m yr}$	Increased
and WAM	(+)				(rapid)	carrying capacity
Amazon rainforest	Tree fraction	Precipitation,	1100 mm/yr	+3−4 °C	\sim 50 yr	Biodiversity loss,
	(-)	dry season length			(gradual)	decreased rainfall
Boreal forest	Tree fraction	Local ΔT_{air}	+~7 °C	+3 − 5 °C	${\sim}50~{ m yr}$	Switch of biome
	(-)				(gradual)	

*Numbers given are preliminary as they are the result of a three-fold subjective but informed procedure: (1) selection of workshop participants, (2) assessment by the experts at the workshop, and (3) aggregation of multiple expert opinions by workshop group leaders and authors of this review article.

[†]Global mean temperature change above present (1980–1999) that corresponds to critical value of control, where this can be meaningfully related to global temperature.

Lenton et al.

EPFL Results from literature review and workshop

- description and analysis of gradual changes does not suffice
- risk aversion and the precautionary principle (but what is a dangerous interference?)

Climate economics Some conclusions for session 1

- climate change happens on very long time scales
- human economic activity is the dominant cause («extremely likely»)
 - dominant GHG emission sources: energy-related fossil fuel use, agriculture/land use
 - global GHG emissions still rise, especially in high middle income countries
 - per capita emissions are highest where rich people live, especially when accounted on a consumption basis
- uncertainty is highly relevant for climate economic analysis
 - uncertainties in emissions pathways affect climate projections
 - uncertainties in climate projections affect economic analysis
- Paris temperature goals (1.5°C or well below 2°C) require
 - immediate and drastic mitigation action
 - negative emissions

