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Problem 1.

(a) Code I is prefix-free, Code II is not.

(b) Both codes are uniquely decodable: Code I because it is instantaneous, Code II
because the 1’s at the beginning of each code word act as markers that separates the
codewords and the decoding can be performed by counting the 0’s between the 1’s.

(c) Since each codeword of code II begins with the letter 1 and since the letter 1 only
appears at the beginning of codewords, this letter acts as an indicator of start of a
codeword.

Problem 2. Since the class of instantaneous codewords is a subset of the class of uniquely
decodable codewords, it follows that M̄2 ≤ M̄1. On the other hand, let {li} be the code-
word lengths of the uniquely decodable code for which M̄ = M̄2. Since {li} satisfies the
Kraft’s inequality, there exists an instantaneous code with these codeword lengths. For
this instantaneous code M̄ = M2 and we see that M̄1 ≤ M̄ = M2, and we conclude that
M̄1 = M̄2.

Problem 3.

(a) {00, 01, 100, 101, 1100, 1101, 1110, 1111}.

(b) First note that if any two number differ by 2−k, their binary expansion will differ
somewhere in the first k bits after the ‘point’. (Think of the decimal case: if a =
0.375 . . . and b differs by more than 10−3 by it, then b’s expansion cannot start with
0.375.)

Next observe that that for i > j

Qi −Qj =
i−1∑
k=j

P (ak) ≥ P (aj) ≥ 2−lj .

So, the binary expansion of Qi and Qj must differ somewhere in the first lj bits. Since
codewords for i and j are at least lj bits long, neither codeword can be a prefix of
the other.

The bound on the average codeword length follows from

− log2 P (ai) ≤ li < − log2 P (ai) + 1.

This method of coding is also known as Shannon coding and predates Huffman coding.



Problem 4.

(a) Consider the longest and the shortest codewords. We know that there are at least
two longest codewords, suppose their length is l. Suppose the shortest codewords has
length s. Suppose that s and l differ by 2 or more. To show that this cannot be the
case for an optimal code, consider the transformation shown below:

. . . . . .

=⇒
α

α

β

β

γ

γ

We see that the transformation decreases the length of two codewords (for letters β
and γ) by l − (s + 1) = l − s − 1, whereas it increases the length of one codeword
(for the letter α) by (l− 1)− s = l− s− 1. But since l− s− 1 > 0, and since all the
codewords are equally likely, this would have decreased the average codeword length,
contradicting the optimality of the Huffman code. Thus, the longest and shortest
codeword lengths can differ by at most 1, and these lengths must be j and j + 1.
(If some other two consecutive depths were used we would either not have enough
leaves, or have too many leaves).

(b) Let the number of codewords of length k be mk, k = j, j + 1. Since the Huffman
procedure yields a complete tree (no leaf is unoccupied) all intermediate nodes have
two children. Thus, the 2j nodes at level j of the tree are either codewords (mj of
them) or each of their two children are codewords (mj+1/2 of them). Thus

mj +mj+1/2 = 2j,

and also mj +mj+1 = x2j. From these two equations we find

mj = (2− x)2j and mj+1 = (x− 1)2j+1.

(c) By the result of (b) the average codeword length is

[jmj + (j + 1)mj+1]/(x2j) = j + 2(x− 1)/x.

Problem 5. An optimal set of codewords for the two sources are as follows:

Source I Source II
Binary Ternary Binary Ternary
00 0 00 0
01 10 01 1
100 11 100 21
101 12 101 20
110 20 110 220
111 21 1110 221

1111 222
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with average codeword lengths 2.5, 1.7, 2.55, 1.65 digits/symbol, in the order the codes
appear in the table.

Note that for the ternary code for Source I, we need to add to the symbols of the source
an extra symbol of probability zero so that the number of symbols equal 1 modulo D − 1.

Problem 6.

(a) Let p = P (a1), thus P (a2) = P (a3) = P (a4) = (1− p)/3. By the Huffman construc-
tion (see figure below) we must have p > 2(1 − p)/3, i.e., q = 2/5 in order to have
n1 = 1.
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(b) With P (a1) = q, the figure below illustrates that a Huffman code exists with n1 > 1.
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(c) & (d) For K = 2, n1 is always 1. For K = 3, n1 = 1 is guaranteed by P (a1) > P (a2) ≥
P (a3). Now take K ≥ 4 and assume P (a1) > 2/5 and P (a1) > P (a2) ≥ · · · ≥ P (aK).
The Huffman procedure will combine aK−1 and aK to obtain a super-symbol with
probability

P (aK−1) + P (aK) < 2
3/5

K − 1
≤ 2/5.

Thus, in the reduced ensemble a1 is still the most likely element. Repeating the
argument until K = 3, we see that P (a1) > q guarantees n1 = 1 in all cases.

(e) For K < 3 no such q′ exists. For K ≥ 3, we claim q′ = 1/3. Assume a1 remains
unpaired until the 2nd to last stage (otherwise there is nothing to prove). At this
stage we have three nodes, and P (a1) < q′ must be strictly less than one of the other
two (otherwise all three would have been less than 1/3). Thus a1 will be combined
with one of them, leading to n1 > 1.

3


