ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 9
Information Theory and Coding
Homework 4
Oct. 06, 2020

Problem 1.

(a) Let U be a random variable taking values in the alphabet \mathcal{U}, and let f be a mapping from \mathcal{U} to \mathcal{V}. Show that $H(f(U)) \leq H(U)$.
(b) Let U and V be two random variables taking values in the alphabets \mathcal{U} and \mathcal{V} respectively, and let f be a mapping from \mathcal{V} to \mathcal{W}. Show that $H(U \mid V) \leq H(U \mid f(V))$.

Problem 2.

(a) Let U and \hat{U} be two random variables taking values in the same alphabet \mathcal{U}, and let $p_{e}=\mathbb{P}[U \neq \hat{U}]$. Show that $H(U \mid \hat{U}) \leq h\left(p_{e}\right)+p_{e} \log (|\mathcal{U}|-1)$, where $h(p)=$ $p \log \frac{1}{p}+(1-p) \log \frac{1}{1-p}$.
Hint: use the random variable $W \in\{0,1\}$ defined by

$$
W=\left\{\begin{array}{l}
1 \text { if } U \neq \hat{U} \\
0 \text { otherwise }
\end{array}\right.
$$

(b) Let U and V be two random variables taking values in the alphabets \mathcal{U} and \mathcal{V} respectively, and let f be a mapping from \mathcal{V} to \mathcal{U}. Define $p_{e}=\mathbb{P}[U \neq f(V)]$. Show that $H(U \mid V) \leq h\left(p_{e}\right)+p_{e} \log (|\mathcal{U}|-1)$.

Problem 3. The entropy $H(U)$ of a random variable U is a function of the distribution p_{U} of the random variable. Denote by $h(p)$ the entropy of a random variable with distribution p, i.e., $h(p)=\sum_{u \in \mathcal{U}} p(u) \log \frac{1}{p(u)}$. Let p and q be two probability distributions on the same alphabet \mathcal{U}, and, for $\theta \in[0,1]$ let r be the probability distribution on \mathcal{U} defined by

$$
r(u)=\theta p(u)+(1-\theta) q(u)
$$

for every $u \in \mathcal{U}$. We are going to show that

$$
H(r) \geq \theta H(p)+(1-\theta) H(q)
$$

(a) Let U_{1} and U_{2} be random variables with distributions p and q respectively. Let $Z \in$ $\{1,2\}$ be a binary random variable with $P(Z=1)=\theta$. Finally define the random variable U as

$$
U= \begin{cases}U_{1} & \text { if } Z=1 \\ U_{2} & \text { if } Z=2\end{cases}
$$

What is the distribution of U ?
(b) Compute $H(U)$ and $H(U \mid Z)$. What can you conclude?

Problem 4. Consider a source U with alphabet \mathcal{U} and suppose that we know that the true distribution of U is either P_{1} or P_{2}. Define $S=\sum_{u \in \mathcal{U}} \max \left\{P_{1}(u), P_{2}(u)\right\}$.
(a) Show that $S \leq 2$ and give a necessary and sufficient condition for equality.
(b) Show that there exists a prefix-free code where the length of the codeword associated to each symbol $u \in \mathcal{U}$ is $l(u)=\left\lceil\log _{2} \frac{S}{\max \left\{P_{1}(u), P_{2}(u)\right\}}\right\rceil$.
(c) Show that the average length \bar{l} (using the true distribution) of the code constructed in (b) satisfies $H(U) \leq \bar{l}<H(U)+\log S+1 \leq H(U)+2$.

Now assume that the true distribution of U is one of k distributions P_{1}, \ldots, P_{k}.
(d) Show that there exists a prefix-free code satisfying $H(U) \leq \bar{l}<H(U)+\log _{2} S+1 \leq$ $H(U)+\log _{2} k+1$, where $S=\sum_{u \in \mathcal{U}} \max \left\{P_{1}(u), \ldots, P_{k}(u)\right\}$.
Problem 5. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be n pairs of random variables which may or may not be independent. For every $i \geq 1$ and $j \leq n$, define X_{i}^{j} to be the sequence X_{i}, \ldots, X_{j} if $i \leq j$, and to be \varnothing if $i>j$. Define Y_{i}^{j} similarly. Therefore, since $X_{n+1}^{n}=Y_{1}^{0}=\varnothing$ we have $I\left(X_{n+1}^{n} ; Y_{n}\right)=I\left(Y_{1}^{0} ; X_{1}\right)=0$ and $I\left(Y_{1}^{n-1} ; X_{n} \mid X_{n+1}^{n}\right)=I\left(Y_{1}^{n-1} ; X_{n}\right)$.
(a) Show that $I\left(Y_{1}^{n-1} ; X_{n}\right)=\sum_{i=1}^{n-1} I\left(X_{n} ; Y_{i} \mid Y_{1}^{i-1}\right)$.
(b) Show that $\sum_{i=1}^{n} I\left(X_{i+1}^{n} ; Y_{i} \mid Y_{1}^{i-1}\right)=\sum_{i=1}^{n} I\left(Y_{1}^{i-1} ; X_{i} \mid X_{i+1}^{n}\right)$.

Problem 6. Decode the string 10010011 that was encoded using the Lempel-Ziv algorithm with alphabet set $\mathcal{U}=\{a, l\}$.

Problem 7. Define the type $P_{\mathbf{x}}$ (or empirical probability distribution) of a sequence $\mathbf{x}=$ x_{1}, \ldots, x_{n} be the relative proportion of occurrences of each symbol of \mathcal{X}; i.e., $P_{\mathbf{x}}(a)=$ $N(a \mid \mathbf{x}) / n$ for all $a \in \mathcal{X}$, where $N(a \mid \mathbf{x})$ is the number of times the symbol a occurs in the sequence $\mathbf{x} \in \mathcal{X}^{n}$.
(a) Show that if X_{1}, \ldots, X_{n} are drawn i.i.d. according to $Q(x)$, the probability of \mathbf{x} depends only on its type and is given by

$$
Q^{n}(\mathbf{x})=2^{-n\left(H\left(P_{\mathbf{x}}\right)+D\left(P_{\mathbf{x}} \| Q\right)\right)} .
$$

Define the type class $T(P)$ as the set of sequences of length n and type P :

$$
T(P)=\left\{\mathbf{x} \in \mathcal{X}^{n}: P_{\mathbf{x}}=P\right\} .
$$

For example, if we consider binary alphabet, the type is defined by the number of 1 's in the sequence and the size of the type class is therefore $\binom{n}{k}$.
(b) Show for a binary alphabet that

$$
|T(P)| \doteq 2^{n H(P)}
$$

We say that $a_{n} \doteq b_{n}$, if $\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{a_{n}}{b_{n}}=0$.
(c) Use (a) and (b) to show that

$$
Q^{n}(T(P)) \doteq 2^{-n D(P \| Q)}
$$

Note: $D(P \| Q)$ is the informational divergence (or Kullback-Leibler divergence) between two probability distributions P and Q on a common alphabet \mathcal{X} and is defined as

$$
D(P \| Q)=\sum_{a \in \mathcal{X}} P(a) \log \frac{P(a)}{Q(a)}
$$

Recall that we have already seen the non-negativity of this quantity in the class.

