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Problem 1.

(a) Since the lengths of the codewords satisfy the Kraft inequality, an instantaneous
code can be used for the final stage of encoding the intermediate digits to binary
codewords. In this case, each stage of the encoding is uniquely decodable, and thus
the overall code is uniquely decodable.

(b) The indicated source sequences have probabilities 0.1, (0.9)(0.1), (0.9)2(0.1), (0.9)3(0.1),
. . . , (0.9)7(0.1), (0.9)8. Thus,

N̄ =
8∑

i=1

i(0.1)(0.9)i−1 + 8(0.9)8 = 5.6953.

(c)
M̄ = 1(0.9)8 + 4[1− (0.9)8] = 2.7086.

(d) Let N(i) be the number of source digits giving rise to the first i intermediate digits.
For any ε > 0

lim
i→∞

Pr
[∣∣∣N(i)

i
− N̄

∣∣∣ > ε
]

= 0.

Similarly, let M(i) be the number of encoded bits corresponding the the first i inter-
mediate digits. Then

lim
i→∞

Pr
[∣∣∣M(i)

i
− M̄

∣∣∣ > ε
]

= 0.

From this, we see that for any ε > 0,

lim
i→∞

Pr
[∣∣∣M(i)

N(i)
− M̄

N̄

∣∣∣ > ε
]

= 0,

and that for a long source sequence the number of encoded bits per source digit will
be M̄/N̄ = 0.4756.

The average length of the Huffman code encoding 4 source digits at a time is 1.9702,
yielding 1.9702/4 = 0.49255 encoded bits per source digit.

For those of you puzzled by the fact that the ‘optimum’ Huffman code gives a worse
result for this source than the run-length coding technique, observe that the Huffman
code is the optimal solution to a mathematical problem with a given message set, but
the choice of a message set can be more important than the choice of codewords for
a given message set.



Problem 2.

(a) We already know that
H(X) +H(Y ) ≥ H(XY ),

H(Y ) +H(Z) ≥ H(Y Z),

and
H(Z) +H(X) ≥ H(ZX).

Adding these inequalities together and diving by two gives

H(X) +H(Y ) +H(Z) ≥ 1

2

[
H(XY ) +H(Y Z) +H(ZX)

]
.

(b) The difference between the left and right sides, i.e.,

H(XY ) +H(Y Z)−H(XY Z)−H(Y ),

equals
H(X|Y )−H(X|Y Z) = I(X;Z|Y ),

which is always positive.

(c) Using (b) with (Y ZX) and (ZXY ) in the role of (XY Z) gives the inequalities

H(Y Z) +H(ZX) ≥ H(XY Z) +H(Z)

and
H(ZX) +H(XY ) ≥ H(XY Z) +H(X).

Adding the inequality in (b) to these two gives

2
[
H(XY ) +H(Y Z) +H(ZX)

]
≥ 3H(XY Z) +H(X) +H(Y ) +H(Z).

(d) Since H(X) +H(Y ) +H(Z) ≥ H(XY Z), (c) yields

2
[
H(XY ) +H(Y Z) +H(ZX)

]
≥ 4H(XY Z).

(e) Let
{

(xi, yi, zi) : i = 1, . . . , n
}

be the xyz-coordinates of the n points. Let X, Y and
Z be random variables with Pr

(
(X, Y, Z) = (xi, yi, zi)

)
= 1/n for every 1 ≤ i ≤ n.

Then, H(XY Z) = log2 n. Furthermore, the random pair (XY ) takes values in the
projection of the n points to the xy plane and similarly for (Y Z) and (ZX). Thus
H(XY ) ≤ log2 nxy, H(Y Z) ≤ log2 nyz, and H(ZX) ≤ log2 nzx. Part (d) now yields

log2[nxynyznzx] ≥ H(XY ) +H(Y Z) +H(ZX) ≥ 2H(XY Z) = 2 log2 n,

which implies that nxynyznzx ≥ n2.

The relationship between H(XY Z) and H(XY ), H(Y Z) and H(ZX) is a special case of
Han’s inequality, which, for a collection of n random variables relates the sum of the

(
n
k

)
joint entropies of k out of n random variables to the sum of the

(
n

k+1

)
entropies of k + 1

out of n random variables.
The combinatorial fact about the projections of points in 3D is known as Shearer’s

lemma.
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Problem 3.

H(X) = −
M∑
k=1

PX(ak) logPX(ak)

= −
M−1∑
k=1

(1− α)PY (ak) log[(1− α)PY (ak)]− α logα

= (1− α)H(Y )− (1− α) log(1− α)− α logα

Since Y is a random variable that takes M − 1 values H(Y ) ≤ log(M − 1) with equality if
and only if Y takes each of its possible values with equal probability.

Problem 4.

(a) Using the chain rule for mutual information,

I(X, Y ;Z) = I(X;Z) + I(Y ;Z | X) ≥ I(X;Z),

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(b) Using the chain rule for conditional entropy,

H(X, Y | Z) = H(X | Z) +H(Y | X,Z) ≥ H(X | Z),

with equality iff H(Y | X,Z) = 0, that is, when Y is a function of X and/or Z.

(c) Using first the chain rule for entropy and then the definition of conditional mutual
information,

H(X, Y, Z)−H(X, Y ) = H(Z | X, Y ) = H(Z | X)− I(Y ;Z | X)

≤ H(Z | X) = H(X,Z)−H(X) ,

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(d) Using the chain rule for mutual information,

I(X;Z | Y ) + I(Z;Y ) = I(X, Y ;Z) = I(Z;Y | X) + I(X;Z) ,

and therefore
I(X;Z | Y ) = I(Z;Y | X)− I(Z;Y ) + I(X;Z) .

We see that this inequality is actually an equality in all cases.

Problem 5. Let X i denote X1, . . . , Xi.

(a) By stationarity we have for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xn|Xn−i+1, Xn−i+2, . . . , Xn−1) = H(Xi|X i−1),

which implies that,

H(Xn|Xn−1) =

∑n
i=1H(Xn|Xn−1)

n
(1)

≤
∑n

i=1H(Xi|X i−1)

n
(2)

=
H(X1, X2, . . . , Xn)

n
. (3)
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(b) By the chain rule for entropy,

H(X1, X2, . . . , Xn)

n
=

∑n
i=1H(Xi|X i−1)

n
(4)

=
H(Xn|Xn−1) +

∑n−1
i=1 H(Xi|X i−1)

n
(5)

=
H(Xn|Xn−1) +H(X1, X2, . . . , Xn−1)

n
. (6)

From stationarity it follows that for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which further implies, by summing both sides over i = 1, . . . , n − 1 and dividing by
n− 1, that,

H(Xn|Xn−1) ≤
∑n−1

i=1 H(Xi|X i−1)

n− 1
(7)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (8)

Combining (??) and (??) yields,

H(X1, X2, . . . , Xn)

n
≤ 1

n

[
H(X1, X2, . . . , Xn−1)

n− 1
+H(X1, X2, . . . , Xn−1)

]
(9)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (10)

Problem 6. By the chain rule for entropy,

H(X0|X−1, . . . , X−n) = H(X0, X−1, . . . , X−n)−H(X−1, . . . , X−n) (11)

= H(X0, X1, . . . , Xn)−H(X1, . . . , Xn) (12)

= H(X0|X1, . . . , Xn), (13)

where (??) follows from stationarity.

Problem 7. X −−◦ Y −−◦ (Z,W ) implies that I(X;Z,W |Y ) = 0. Then,

I(X;Y ) + I(Z;W ) = I(X;Y ) + I(X;Z,W |Y ) + I(Z;W ) = I(X;Y, Z,W ) + I(Z;W )

Notice that I(X;Y ) + I(X;Z,W |Y ) = I(X;Y, Z,W ) follows from chain rule. Using the
chain rule for a couple of times, we obtain the following steps.

I(X;Y, Z,W ) + I(Z;W ) = I(X;Z) + I(X;Y,W |Z) + I(Z;W ) (14)

= I(X;Z) + I(X;Y |W,Z) + I(X;W |Z) + I(Z;W ) (15)

= I(X;Z) + I(X;Y |W,Z) + I(X,Z;W ) (16)

≥ I(X;Z) + I(X;W ) (17)

as I(X,Z;W ) ≥ I(X;W )
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