
LECTURE 4

YASH LODHA

1. Review of smooth maps and diffeomorphisms in Euclidean space

Let U ⊂ Rn be an open subset and let f : U → R be a real valued function. The recall that

∂f

∂xj
(a) = lim

t→0

f(a+ tej)− f(a)

t

More generally, for a vector valued function

F : U → Rm F = (F 1, ..., Fm)

we define ∂F i

∂xj . The matrix Ai,j = (∂F
i

∂xj ) is called the Jacobian matrix and its determinant is called the Jacobian

determinant. The function F is said to be of class Ck, if the k-th order derivatives exist and are continuous.
The function is said to be smooth, if it is infinitely differentiable. It is called a diffeomorphism, if it is smooth
and bijective, and the inverse function is also smooth.

2. Geometric tangent vectors

Given a point a ∈ Rn, a geometric tangent vector at a is the set of pairs

Rn
a = {(a, v) | v ∈ Rn}

The pair (a, v) is usually denoted as va and the space Rn
a is endowed with the natural structure of a vector space.

Recall that C∞(Rn) is the set of smooth functions from Rn to R. This is naturally an infinite dimensional
vector space with pointwise addition and scalar multiplication

(f + g)(x) = f(x) + g(x) (cf)(x) = c(f(x))

Any geometric tangent vector va yields a map

Dv |a: C∞(Rn)→ R

which takes the directional derivative

Dv |a (f) = Dv(f(a)) =
d

dt
|t=0 f(a+ tv)

This is linear over R, i.e.

Dv |a (cf + dg) = cDv |a (f) + dDv |a (g) f, g ∈ C∞(Rn), c, d ∈ R

and it satisfies the product rule

Dv |a (fg) = f(a)Dv |a g + g(a)Dv |a f
Such a derivation can be written concretely as:

Dv |a f = vi
∂f

∂xi
(a) v = viEi

With this construction in mind, we can “abstract” this as follows. Given a ∈ Rn, a map

w : C∞(Rn)→ R

is called a derivation at a if it is linear over R and satisfies the product rule, i.e.

w(fg) = f(a)wg + g(a)wf

We denote by TaR
n as the set of all derivations at a. This is clearly a real vector space under the operation

(w1 + w2)f = w1f + w2f (cw)f = c(wf)

Exercise 2.1. Check the above, i.e. indeed the set of all derivations form a vector space.

We will show that TaR
n is finite dimensional and naturally isomorphic to Rn.

Lemma 2.2. Suppose a ∈ Rn, w ∈ TaRn and f, g ∈ C∞(Rn). Then
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(1) If f is a constant function, then wf = 0.
(2) If f(a) = g(a) = 0, then w(fg) = 0.

Exercise 2.3. Prove the above Lemma using linearity and the product rule.

Proposition 2.4. Let a ∈ Rn.

(1) For each geometric tangent vector va ∈ Rn, the map

Dv |a: C∞(Rn)→ R

is a derivation at a.
(2) The map v → Dv |a is an isomorphism from Rn → TaR

n.

Proof. Part a is immediate from the definitions. To prove that the map in part b is an isomorphism, first note
that it is clearly linear. We will show that it is injective and surjective.

Suppose va has the property that Dv |a is the zero derivation. Let f be the j-th coordinate function, which
is clearly smooth. Then

Dv |a f = vj v = viEi

This is zero for each coordinate function if and only if v is the zero vector. This proves that the map is injective.
Now we shall prove surjectivity. Let w ∈ TaRn be a derivation. Let vi = w(xi), where xi is the i’th coordinate

function. Let f : Rn → R be a smooth function. Using Taylor’s theorem we can write

f(x) = f(a) +
∑

1≤i≤n

∂f

∂xi
(a)(xi − ai) +

∑
1≤i,j≤n

(xi − ai)(xj − aj)
∫ 1

0

(1− t) ∂2f

∂xi∂xj
(a+ t(x− a))dt

Using the product rule, when we take the derivation wf , the first and the third term above vanishes and we
obtain

wf =
∑

1≤i≤n

w(
∂f

∂xi
(a)(xi − ai)) =

∑
1≤i≤n

∂f

∂xi
(a)(w(xi)− w(ai))

=
∑

1≤i≤n

∂f

∂xi
(a)vi = Dv |a f v = viEi

�

Corollary 2.5. For any a ∈ Rn, the derivations

∂

∂x1
|a, ...,

∂

∂xn
|a

form a basis for TnRn.

3. Tangent vectors on manifolds

Let M be a smooth manifold of dimension n. The vector space of smooth functions from M → R is denoted
as C∞(M). A linear map w : C∞(M)→ R is called a derivation at p if is satisfies the product rule:

w(fg) = f(p)w(g) + g(p)w(f)

The set of all derivations at p ∈ M is denoted as Tp(M), and an element v ∈ Tp(M) is called a tangent vector
atp.

The following is an analogue of the Lemma from the previous section.

Lemma 3.1. Suppose M is a smooth manifold, p ∈M, v ∈ Tp(M), f, g ∈ C∞(M). Then the following hold

(1) If f is a constant function, then v(f) = 0.
(2) If f(p) = g(p) = 0, then v(fg) = 0.

Using the Theorem from the previous section, we conclude that for each p ∈M , Tp(M) is an n-dimensional
real vector space.
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3.1. The differential of a smooth map. Let M,N be smooth manifolds and F : M → N be a smooth map.
For each p ∈M , we define a map

dFp : Tp(M)→ TF (p))(M)

as follows. Let v ∈ Tp(M). Then dFp(v) = w where w is the derivation

w(f) = v(f ◦ F )

Note that the above makes sense since f ◦F is also a smooth function. To check that this is a derivation, we
need to check that it is linear and that it satisfies the product rule. Linearity is immediate from the definition,
and to check the product rule:

w(fg) = v(fg ◦ F ) = v((f ◦ F )(g ◦ F )) = (f ◦ F )(p)v(g ◦ F ) + (g ◦ F )(p)v(f ◦ F ) = f(F (p))w(g) + g(F (p))w(f)

We now summarise some basic properties of this differential operator.

Proposition 3.2. Let M,N,P be smooth manifolds and let

F : M → N G : N → P

be smooth maps, and let p ∈M, q = F (p), r = G(F (p)). Then the following holds.

(1) dFp : Tp(M)→ Tq(N) is linear.
(2) d(G ◦ F )p = dGq ◦ dFp : Tp(M)→ Tr(P ).
(3) If F is a diffeomorphism, then dFp : Tp(M)→ Tq(N) is an isomorphism and (dFp)

−1 = dF−1p .

The next proposition demonstrates that the derivations provided by tangent vectors are “local”.

Proposition 3.3. Let M be a smooth manifold, p ∈ M and v ∈ Tp(M). If f, g ∈ C∞(M) agree on some
neighbourhood of p then v(f) = v(g).

Proof. Let h = f − g. Clearly, h vanishes on a neighbourhood of p as f, g agree on such a neighbourhood. Let
φ be a smooth bump function that is identically 1 on supp(h) and whose support satisfies

supp(φ) ⊂M \ {p}

Then v(φh) = 0 thanks to Lemma 3.1. Note that φh is indeed equal to h, by definition. It follows that v(h) = 0
and so by linearity v(f − g) = 0 =⇒ v(f) = v(g). �

Proposition 3.4. Let M be a smooth manifold and let U ⊆M be an open set with the inclusion map i : U →M .
For every p ∈M , the differential di : Tp(U)→ Tp(M) is an isomorphism.

Proof. First we show that the differential is injective. Suppose v ∈ Tp(U) lies in the kernel. Let B be an open

ball around p such that B ⊂ U . Let f ∈ C∞(U). The extension theorem (from the exercises!) guarantees that

there exists a smooth function f̃ : M → R such that f̃ � B = f � B. Proposition 3.3 implies that

v(f) = v(f̃ �U ) = v(f̃ ◦ i) = dip(v)(f̃) = 0

However, v(f) = 0 cannot hold for each f ∈ C∞(U) since v 6= 0. This is a contradiction. Hence the differential
is injective.

Now we shall prove surjectivity. Suppose that w ∈ Tp(M) is arbitrary. Let B be as above. Define an operator

v : C∞(U)→ R by v(f) = w(f̃) where f̃ is any smooth function in C∞(M) that agrees with f on B. Note that

by Proposition 3.3, the definition does not depend on the choice of f̃ and hence is well defined and is obviously
a derivation at p. For any g ∈ C∞(M) it follows that

dip(v)(g) = v(g ◦ i) = w(g̃ ◦ i) = w(g)

so v 7→ w. �

Now we prove the following fundamental statement about the dimension of the tangent space.

Proposition 3.5. If M is an n-dimensional smooth manifold and p ∈ M , the tangent space Tp(M) is an
n-dimensional vector space.

Proof. Gievn p ∈M , let (U, φ) be a smooth coordinate chart containing p. Because φ is a diffeomorphism from
U to an open subset U ′ of Rn, It follows that Tp(U) is isomorphic to Tφ(p)(U

′) by the last part of Proposition 3.2.
Since Tp(U) is isomorphic to Tp(M) and Tp(U

′) is isomorphic to Tp(R
n) by Proposition 3.4, we are done. �
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4. The tangent bundle

It is often useful to consider all tangent vectors of all points on a smooth manifold M as a single object. This
is called the tangent bundle, and is defined as the set

TM = tp∈MTp(M)

Elements of the tangent bundle as denoted as pairs (p, v) where p ∈M and v ∈ Tp(M). The natural projection
map TM →M is simply (p, v) 7→ p. The tangent bundle is more than simply a union of vector spaces, indeed
it has the structure of a smooth manifold. We shall prove this (hopefully!) eventually in the course.

Proposition 4.1. For any smooth manifold M of dimension n, the tangent bundle TM has a natural topology
and a smooth structure that make it a smooth manifold of dimension 2n. With respect to this smooth structure,
the natural projection map TM →M is smooth.


