LECTURE 4

YASH LODHA

1. REVIEW OF SMOOTH MAPS AND DIFFEOMORPHISMS IN EUCLIDEAN SPACE
Let U C R™ be an open subset and let f: U — R be a real valued function. The recall that
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More generally, for a vector valued function
F:U—-R™ F=(F' ., F™)

we define gi J . The matrix A; ; = (g%) is called the Jacobian matriz and its determinant is called the Jacobian

determinant. The function F is said to be of class C*, if the k-th order derivatives exist and are continuous.
The function is said to be smooth, if it is infinitely differentiable. It is called a diffeomorphism, if it is smooth
and bijective, and the inverse function is also smooth.

2. GEOMETRIC TANGENT VECTORS

Given a point a € R™, a geometric tangent vector at a is the set of pairs
Ry ={(a,v) [veR"}

The pair (a,v) is usually denoted as v, and the space R is endowed with the natural structure of a vector space.
Recall that C*°(R™) is the set of smooth functions from R™ to R. This is naturally an infinite dimensional
vector space with pointwise addition and scalar multiplication

(f+ o)) =f()+g(x)  (cf)z)=c(f(z))
Any geometric tangent vector v, yields a map
Dy |o: C*(R") - R

which takes the directional derivative

Dy lu () = Do(f(a)) = & [uco fla+ t0)
This is linear over R, i.e.
Dy la (cf +dg) =Dy la (f) +dDy | (9)  f,g€ OF(R"),c,de R
and it satisfies the product rule
Dy la (fg) = f(a)Dy o g+ g(a)Dy |a f

Such a derivation can be written concretely as:

_ i 9f _ R
Dv|af—vaxi(a) v=v"E;

With this construction in mind, we can “abstract” this as follows. Given a € R™, a map
w:C*R") >R
is called a derivation at a if it is linear over R and satisfies the product rule, i.e.
w(fg) = fla)wg + gla)wf
We denote by T,R"™ as the set of all derivations at a. This is clearly a real vector space under the operation
(w1 +wo)f =wif +waf  (cw)f =c(wf)

Exercise 2.1. Check the above, i.e. indeed the set of all derivations form a vector space.

We will show that T, R" is finite dimensional and naturally isomorphic to R".

Lemma 2.2. Suppose a € R",w € T,R" and f,g € C*°(R"™). Then



2 YASH LODHA

(1) If f is a constant function, then wf = 0.
(2) 17 f(a) = g(a) = 0, then w(fg) = 0.

Exercise 2.3. Prove the above Lemma using linearity and the product rule.

Proposition 2.4. Let a € R".

(1) For each geometric tangent vector v, € R", the map
D, |,: C*(R") =R

is a derivation at a.
(2) The map v — D, |, is an isomorphism from R™ — T,R"™.

Proof. Part a is immediate from the definitions. To prove that the map in part b is an isomorphism, first note
that it is clearly linear. We will show that it is injective and surjective.

Suppose v, has the property that D, |, is the zero derivation. Let f be the j-th coordinate function, which
is clearly smooth. Then

Dylo f=v7 v =v'FE;
This is zero for each coordinate function if and only if v is the zero vector. This proves that the map is injective.

Now we shall prove surjectivity. Let w € T,R™ be a derivation. Let v* = w(z?), where 2? is the i’th coordinate
function. Let f : R™ — R be a smooth function. Using Taylor’s theorem we can write

1 2
f(z) = fla) + Z g;(a)(xi—ai)—i— Z (xi—ai)(xj—aj)/o (1—t)83,8];j(a+t(x—a))dt

1<i<n 1<4,j<n

Using the product rule, when we take the derivation wf, the first and the third term above vanishes and we
obtain

wf = Z w(aaj; (a)(z' —a?)) = Z ga‘; (a)(w(z?) —w(a?))

1<i<n 1<i<n

= Z gf (a)w' =Dy |o f v="10'E;

7
1<i<n

Corollary 2.5. For any a € R", the derivations
0 0

gat 1+ G la

form a basis for T,R™.

3. TANGENT VECTORS ON MANIFOLDS

Let M be a smooth manifold of dimension n. The vector space of smooth functions from M — R is denoted
as C°°(M). A linear map w : C*°(M) — R is called a derivation at p if is satisfies the product rule:

w(fg) = f(p)w(g) + g(p)w(f)

The set of all derivations at p € M is denoted as T),(M), and an element v € T,,(M) is called a tangent vector
atp.
The following is an analogue of the Lemma from the previous section.
Lemma 3.1. Suppose M is a smooth manifold, p € M,v € T,(M), f,g € C>(M). Then the following hold
(1) If f is a constant function, then v(f) = 0.
(2) If f(p) = 9(p) = 0, then v(fg) = 0.

Using the Theorem from the previous section, we conclude that for each p € M, T,(M) is an n-dimensional
real vector space.
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3.1. The differential of a smooth map. Let M, N be smooth manifolds and ' : M — N be a smooth map.
For each p € M, we define a map

de : TP(M) — TF(p))(M)
as follows. Let v € T,,(M). Then dF),(v) = w where w is the derivation

w(f) =v(foF)

Note that the above makes sense since f o F' is also a smooth function. To check that this is a derivation, we
need to check that it is linear and that it satisfies the product rule. Linearity is immediate from the definition,
and to check the product rule:

w(fg) =v(fge F) =v((foF)(goF)) = (foF)(p)v(ge F)+ (g0 F)(p)v(fo F) = f(F(p))w(g) + g(F(p))w(f)
We now summarise some basic properties of this differential operator.
Proposition 3.2. Let M, N, P be smooth manifolds and let
F:M—N G:N—=P

be smooth maps, and let p € M,q = F(p),r = G(F(p)). Then the following holds.
(1) dF, : T,(M) — T,(N) is linear.
(2) d(G o F), = dGy o dF, : Ty(M) — T,(P).
(3) If F is a diffeomorphism, then dF, : T,(M) — T,(N) is an isomorphism and (dF,)~' = dF; .

The next proposition demonstrates that the derivations provided by tangent vectors are “local”.

Proposition 3.3. Let M be a smooth manifold, p € M and v € T,(M). If f,g € C®(M) agree on some
neighbourhood of p then v(f) = v(g).

Proof. Let h = f — g. Clearly, h vanishes on a neighbourhood of p as f, g agree on such a neighbourhood. Let
¢ be a smooth bump function that is identically 1 on supp(h) and whose support satisfies

supp(¢) C M\ {p}

Then v(¢h) = 0 thanks to Lemma 3.1. Note that ¢h is indeed equal to h, by definition. It follows that v(h) =0
and so by linearity v(f —g) =0 = v(f) = v(g). O

Proposition 3.4. Let M be a smooth manifold and let U C M be an open set with the inclusion mapi: U — M.
For every p € M, the differential di : T,(U) — T,(M) is an isomorphism.

Proof. First we show that the differential is injective. Suppose v € T,,(U) lies in the kernel. Let B be an open
ball around p such that B C U. Let f € C°°(U). The extension theorem (from the exercises!) guarantees that
there exists a smooth function f : M — R such that f [ B = f | B. Proposition 3.3 implies that

o(f) =o(f lv) = v(f 0i) = dip(v)(f) =0
However, v(f) = 0 cannot hold for each f € C°°(U) since v # 0. This is a contradiction. Hence the differential
is injective.

Now we shall prove surjectivity. Suppose that w € T,,(M) is arbitrary. Let B be as above. Define an operator
v: C®(U) = R by v(f) = w(f) where f is any smooth function in C° (M) that agrees with f on B. Note that
by Proposition 3.3, the definition does not depend on the choice of f and hence is well defined and is obviously
a derivation at p. For any g € C°°(M) it follows that

dip(v)(g) = v(g o) = w(g o i) = w(g)
SO U — w. |
Now we prove the following fundamental statement about the dimension of the tangent space.

Proposition 3.5. If M is an n-dimensional smooth manifold and p € M, the tangent space T,(M) is an
n-dimensional vector space.

Proof. Gievn p € M, let (U, ¢) be a smooth coordinate chart containing p. Because ¢ is a diffeomorphism from
U to an open subset U’ of R™, It follows that T},(U) is isomorphic to T, (U’) by the last part of Proposition 3.2.
Since T, (U) is isomorphic to T,(M) and T,(U’) is isomorphic to T,,(R™) by Proposition 3.4, we are done. [
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4. THE TANGENT BUNDLE

It is often useful to consider all tangent vectors of all points on a smooth manifold M as a single object. This
is called the tangent bundle, and is defined as the set

TM = UpenT,(M)

Elements of the tangent bundle as denoted as pairs (p,v) where p € M and v € T,,(M). The natural projection
map TM — M is simply (p,v) — p. The tangent bundle is more than simply a union of vector spaces, indeed
it has the structure of a smooth manifold. We shall prove this (hopefully!) eventually in the course.

Proposition 4.1. For any smooth manifold M of dimension n, the tangent bundle T M has a natural topology
and a smooth structure that make it a smooth manifold of dimension 2n. With respect to this smooth structure,
the natural projection map TM — M is smooth.



