LECTURE 4

YASH LODHA

1. Review of smooth maps and diffeomorphisms in Euclidean space

Let $U \subset \mathbf{R}^{n}$ be an open subset and let $f: U \rightarrow \mathbf{R}$ be a real valued function. The recall that

$$
\frac{\partial f}{\partial x^{j}}(a)=\lim _{t \rightarrow 0} \frac{f\left(a+t e^{j}\right)-f(a)}{t}
$$

More generally, for a vector valued function

$$
F: U \rightarrow \mathbf{R}^{m} \quad F=\left(F^{1}, \ldots, F^{m}\right)
$$

we define $\frac{\partial F^{i}}{\partial x^{j}}$. The matrix $A_{i, j}=\left(\frac{\partial F^{i}}{\partial x^{j}}\right)$ is called the Jacobian matrix and its determinant is called the Jacobian determinant. The function F is said to be of class C^{k}, if the k-th order derivatives exist and are continuous. The function is said to be smooth, if it is infinitely differentiable. It is called a diffeomorphism, if it is smooth and bijective, and the inverse function is also smooth.

2. GEOMETRIC TANGENT VECTORS

Given a point $a \in \mathbf{R}^{n}$, a geometric tangent vector at a is the set of pairs

$$
\mathbf{R}_{a}^{n}=\left\{(a, v) \mid v \in \mathbf{R}^{n}\right\}
$$

The pair (a, v) is usually denoted as v_{a} and the space \mathbf{R}_{a}^{n} is endowed with the natural structure of a vector space. Recall that $C^{\infty}\left(\mathbf{R}^{n}\right)$ is the set of smooth functions from \mathbf{R}^{n} to \mathbf{R}. This is naturally an infinite dimensional vector space with pointwise addition and scalar multiplication

$$
(f+g)(x)=f(x)+g(x) \quad(c f)(x)=c(f(x))
$$

Any geometric tangent vector v_{a} yields a map

$$
\left.D_{v}\right|_{a}: C^{\infty}\left(\mathbf{R}^{n}\right) \rightarrow \mathbf{R}
$$

which takes the directional derivative

$$
\left.D_{v}\right|_{a}(f)=D_{v}(f(a))=\left.\frac{d}{d t}\right|_{t=0} f(a+t v)
$$

This is linear over \mathbf{R}, i.e.

$$
\left.D_{v}\right|_{a}(c f+d g)=\left.c D_{v}\right|_{a}(f)+\left.d D_{v}\right|_{a}(g) \quad f, g \in C^{\infty}\left(\mathbf{R}^{n}\right), c, d \in \mathbf{R}
$$

and it satisfies the product rule

$$
\left.D_{v}\right|_{a}(f g)=\left.f(a) D_{v}\right|_{a} g+\left.g(a) D_{v}\right|_{a} f
$$

Such a derivation can be written concretely as:

$$
\left.D_{v}\right|_{a} f=v^{i} \frac{\partial f}{\partial x^{i}}(a) \quad v=v^{i} E_{i}
$$

With this construction in mind, we can "abstract" this as follows. Given $a \in \mathbf{R}^{n}$, a map

$$
w: C^{\infty}\left(\mathbf{R}^{n}\right) \rightarrow \mathbf{R}
$$

is called a derivation at a if it is linear over \mathbf{R} and satisfies the product rule, i.e.

$$
w(f g)=f(a) w g+g(a) w f
$$

We denote by $T_{a} \mathbf{R}^{n}$ as the set of all derivations at a. This is clearly a real vector space under the operation

$$
\left(w_{1}+w_{2}\right) f=w_{1} f+w_{2} f \quad(c w) f=c(w f)
$$

Exercise 2.1. Check the above, i.e. indeed the set of all derivations form a vector space.
We will show that $T_{a} \mathbf{R}^{n}$ is finite dimensional and naturally isomorphic to \mathbf{R}^{n}.
Lemma 2.2. Suppose $a \in \mathbf{R}^{n}, w \in T_{a} \mathbf{R}^{n}$ and $f, g \in C^{\infty}\left(\mathbf{R}^{n}\right)$. Then
(1) If f is a constant function, then $w f=0$.
(2) If $f(a)=g(a)=0$, then $w(f g)=0$.

Exercise 2.3. Prove the above Lemma using linearity and the product rule.
Proposition 2.4. Let $a \in \mathbf{R}^{n}$.
(1) For each geometric tangent vector $v_{a} \in \mathbf{R}^{n}$, the map

$$
\left.D_{v}\right|_{a}: C^{\infty}\left(\mathbf{R}^{n}\right) \rightarrow \mathbf{R}
$$

is a derivation at a.
(2) The map $\left.v \rightarrow D_{v}\right|_{a}$ is an isomorphism from $\mathbf{R}^{n} \rightarrow T_{a} \mathbf{R}^{n}$.

Proof. Part a is immediate from the definitions. To prove that the map in part b is an isomorphism, first note that it is clearly linear. We will show that it is injective and surjective.

Suppose v_{a} has the property that $\left.D_{v}\right|_{a}$ is the zero derivation. Let f be the j-th coordinate function, which is clearly smooth. Then

$$
\left.D_{v}\right|_{a} f=v^{j} \quad v=v^{i} E_{i}
$$

This is zero for each coordinate function if and only if v is the zero vector. This proves that the map is injective.
Now we shall prove surjectivity. Let $w \in T_{a} \mathbf{R}^{n}$ be a derivation. Let $v^{i}=w\left(x^{i}\right)$, where x^{i} is the i^{\prime} th coordinate function. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a smooth function. Using Taylor's theorem we can write

$$
f(x)=f(a)+\sum_{1 \leq i \leq n} \frac{\partial f}{\partial x^{i}}(a)\left(x^{i}-a^{i}\right)+\sum_{1 \leq i, j \leq n}\left(x^{i}-a^{i}\right)\left(x^{j}-a^{j}\right) \int_{0}^{1}(1-t) \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(a+t(x-a)) d t
$$

Using the product rule, when we take the derivation $w f$, the first and the third term above vanishes and we obtain

$$
\begin{gathered}
w f=\sum_{1 \leq i \leq n} w\left(\frac{\partial f}{\partial x^{i}}(a)\left(x^{i}-a^{i}\right)\right)=\sum_{1 \leq i \leq n} \frac{\partial f}{\partial x^{i}}(a)\left(w\left(x^{i}\right)-w\left(a^{i}\right)\right) \\
=\sum_{1 \leq i \leq n} \frac{\partial f}{\partial x^{i}}(a) v^{i}=\left.D_{v}\right|_{a} f \quad v=v^{i} E_{i}
\end{gathered}
$$

Corollary 2.5. For any $a \in \mathbf{R}^{n}$, the derivations

$$
\left.\frac{\partial}{\partial x^{1}}\right|_{a}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{a}
$$

form a basis for $T_{n} \mathbf{R}^{n}$.

3. TANGENT VECTORS ON MANIFOLDS

Let M be a smooth manifold of dimension n. The vector space of smooth functions from $M \rightarrow \mathbf{R}$ is denoted as $C^{\infty}(M)$. A linear map $w: C^{\infty}(M) \rightarrow \mathbf{R}$ is called a derivation at p if is satisfies the product rule:

$$
w(f g)=f(p) w(g)+g(p) w(f)
$$

The set of all derivations at $p \in M$ is denoted as $T_{p}(M)$, and an element $v \in T_{p}(M)$ is called a tangent vector atp.

The following is an analogue of the Lemma from the previous section.
Lemma 3.1. Suppose M is a smooth manifold, $p \in M, v \in T_{p}(M), f, g \in C^{\infty}(M)$. Then the following hold
(1) If f is a constant function, then $v(f)=0$.
(2) If $f(p)=g(p)=0$, then $v(f g)=0$.

Using the Theorem from the previous section, we conclude that for each $p \in M, T_{p}(M)$ is an n-dimensional real vector space.
3.1. The differential of a smooth map. Let M, N be smooth manifolds and $F: M \rightarrow N$ be a smooth map. For each $p \in M$, we define a map

$$
d F_{p}: T_{p}(M) \rightarrow T_{F(p))}(M)
$$

as follows. Let $v \in T_{p}(M)$. Then $d F_{p}(v)=w$ where w is the derivation

$$
w(f)=v(f \circ F)
$$

Note that the above makes sense since $f \circ F$ is also a smooth function. To check that this is a derivation, we need to check that it is linear and that it satisfies the product rule. Linearity is immediate from the definition, and to check the product rule:
$w(f g)=v(f g \circ F)=v((f \circ F)(g \circ F))=(f \circ F)(p) v(g \circ F)+(g \circ F)(p) v(f \circ F)=f(F(p)) w(g)+g(F(p)) w(f)$
We now summarise some basic properties of this differential operator.
Proposition 3.2. Let M, N, P be smooth manifolds and let

$$
F: M \rightarrow N \quad G: N \rightarrow P
$$

be smooth maps, and let $p \in M, q=F(p), r=G(F(p))$. Then the following holds.
(1) $d F_{p}: T_{p}(M) \rightarrow T_{q}(N)$ is linear.
(2) $d(G \circ F)_{p}=d G_{q} \circ d F_{p}: T_{p}(M) \rightarrow T_{r}(P)$.
(3) If F is a diffeomorphism, then $d F_{p}: T_{p}(M) \rightarrow T_{q}(N)$ is an isomorphism and $\left(d F_{p}\right)^{-1}=d F_{p}^{-1}$.

The next proposition demonstrates that the derivations provided by tangent vectors are "local".
Proposition 3.3. Let M be a smooth manifold, $p \in M$ and $v \in T_{p}(M)$. If $f, g \in C^{\infty}(M)$ agree on some neighbourhood of p then $v(f)=v(g)$.

Proof. Let $h=f-g$. Clearly, h vanishes on a neighbourhood of p as f, g agree on such a neighbourhood. Let ϕ be a smooth bump function that is identically 1 on $\operatorname{supp}(h)$ and whose support satisfies

$$
\operatorname{supp}(\phi) \subset M \backslash\{p\}
$$

Then $v(\phi h)=0$ thanks to Lemma 3.1. Note that ϕh is indeed equal to h, by definition. It follows that $v(h)=0$ and so by linearity $v(f-g)=0 \Longrightarrow v(f)=v(g)$.

Proposition 3.4. Let M be a smooth manifold and let $U \subseteq M$ be an open set with the inclusion map $i: U \rightarrow M$. For every $p \in M$, the differential di $: T_{p}(U) \rightarrow T_{p}(M)$ is an isomorphism.

Proof. First we show that the differential is injective. Suppose $v \in T_{p}(U)$ lies in the kernel. Let B be an open ball around p such that $\bar{B} \subset U$. Let $f \in C^{\infty}(U)$. The extension theorem (from the exercises!) guarantees that there exists a smooth function $\tilde{f}: M \rightarrow \mathbf{R}$ such that $\tilde{f} \upharpoonright \bar{B}=f \upharpoonright \bar{B}$. Proposition 3.3 implies that

$$
v(f)=v\left(\tilde{f} \upharpoonright_{U}\right)=v(\tilde{f} \circ i)=d i_{p}(v)(\tilde{f})=0
$$

However, $v(f)=0$ cannot hold for each $f \in C^{\infty}(U)$ since $v \neq 0$. This is a contradiction. Hence the differential is injective.

Now we shall prove surjectivity. Suppose that $w \in T_{p}(M)$ is arbitrary. Let \bar{B} be as above. Define an operator $v: C^{\infty}(U) \rightarrow \mathbf{R}$ by $v(f)=w(\tilde{f})$ where \tilde{f} is any smooth function in $C^{\infty}(M)$ that agrees with f on \bar{B}. Note that by Proposition 3.3, the definition does not depend on the choice of \tilde{f} and hence is well defined and is obviously a derivation at p. For any $g \in C^{\infty}(M)$ it follows that

$$
d i_{p}(v)(g)=v(g \circ i)=w(\widetilde{g \circ i})=w(g)
$$

so $v \mapsto w$.
Now we prove the following fundamental statement about the dimension of the tangent space.
Proposition 3.5. If M is an n-dimensional smooth manifold and $p \in M$, the tangent space $T_{p}(M)$ is an n-dimensional vector space.

Proof. Gievn $p \in M$, let (U, ϕ) be a smooth coordinate chart containing p. Because ϕ is a diffeomorphism from U to an open subset U^{\prime} of \mathbf{R}^{n}, It follows that $T_{p}(U)$ is isomorphic to $T_{\phi(p)}\left(U^{\prime}\right)$ by the last part of Proposition 3.2. Since $T_{p}(U)$ is isomorphic to $T_{p}(M)$ and $T_{p}\left(U^{\prime}\right)$ is isomorphic to $T_{p}\left(\mathbf{R}^{n}\right)$ by Proposition 3.4, we are done.

4. The tangent bundle

It is often useful to consider all tangent vectors of all points on a smooth manifold M as a single object. This is called the tangent bundle, and is defined as the set

$$
T M=\sqcup_{p \in M} T_{p}(M)
$$

Elements of the tangent bundle as denoted as pairs (p, v) where $p \in M$ and $v \in T_{p}(M)$. The natural projection map $T M \rightarrow M$ is simply $(p, v) \mapsto p$. The tangent bundle is more than simply a union of vector spaces, indeed it has the structure of a smooth manifold. We shall prove this (hopefully!) eventually in the course.

Proposition 4.1. For any smooth manifold M of dimension n, the tangent bundle TM has a natural topology and a smooth structure that make it a smooth manifold of dimension $2 n$. With respect to this smooth structure, the natural projection map $T M \rightarrow M$ is smooth.

