
Lab3: Peeking under the Web - Solutions
COM-208: Computer Networks

The main goal of this lab is to “peek under the web”, i.e., get a sense of how web browsers
and web servers communicate: we will sniff and look inside HTTP messages, then play
around with caching and cookies. We will close with a glance at two other applications
that you use all the time: email and streaming.

Inside HTTP

HTTP (Hypertext Transfer Protocol) is the communication protocol used by the web
application: it specifies the messages that may be exchanged between web clients (also
called web browsers) and web servers.

The most common exchange is one where a web browser requests a resource, and a web
server sends it; you will now initiate such an exchange and look inside the resulting mes-
sages. For this, you will use the telnet utility, which allows you to type in messages and
send them to a remote process, i.e., a process running on a remote computer. Remember:
there is only one process, behind each network interface, that is associated with a given
port number; and all processes in the world that are associated with port number 80 are
web-server processes.

Open a terminal and type:
telnet example.com 80

By typing this, you indicated that you want to communicate with the process that has
name “example.com, 80” (network interface example.com, port number 80). As a result,
the TCP code running on your computer generated a TCP connection setup request and
sent it to the TCP code running on example.com; if that code accepted your request
and sent a response, you got back a prompt, where you can type in messages that will
be sent to the web-server process running on example.com.

1

Type:
GET / HTTP/1.1
host: example.com
[press <return> twice]

You just manually created an HTTP request. You specified that:

• the type of your message is GET,
• the resource you want is “/” (the home page of example.com),
• the version of the HTTP protocol you are using is 1.1,
• and the origin web server who owns the resource you want is example.com.

By pressing twice, you told the telnet utility that your message was ready to be sent.

What you just did manually is what your web browser does (among other things) under
the covers when you type in a URL.

If all went as it should, you received an HTTP response from the web server process,
which contains the base file of the target resource. If the HTTP request had been sent
by your web browser (not by you via telnet), it is your web browser that would have
received the response; it would have processed it, retrieved the URLs of all the referenced
resources, and sent a new HTTP GET request for each resource.

• What is the content type and size of the HTTP response?

$ telnet example.com 80
GET / HTTP/1.1
host: example.com

The response is:
HTTP/1.1 200 OK
Accept-Ranges: bytes
Age: 205380
Cache-Control: max-age=604800
Content-Type: text/html; charset=UTF-8
Date: Sun, 27 Sep 2020 17:35:05 GMT
Etag: "3147526947"
Expires: Sun, 04 Oct 2020 17:35:05 GMT
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT
Server: ECS (dcb/7EC6)
Vary: Accept-Encoding
X-Cache: HIT
Content-Length: 1256

<!doctype html>

2

<html>
<head>
 <title>Example Domain</title>

 <meta charset="utf-8" />
 <meta http-equiv="Content-type" content="text/html; charset=

↪ utf-8" />
 <meta name="viewport" content="width=device-width, initial-

↪ scale=1" />
 <style type="text/css">
 body {
 background-color: #f0f0f2;
 margin: 0;
 padding: 0;
 font-family: -apple-system, system-ui, BlinkMacSystemFont

↪ , "Segoe UI", "Open Sans", "Helvetica Neue", Helvetica,
↪ Arial, sans-serif;

 }
 div {
 width: 600px;
 margin: 5em auto;
 padding: 2em;
 background-color: #fdfdff;
 border-radius: 0.5em;
 box-shadow: 2px 3px 7px 2px rgba(0,0,0,0.02);
 }
 a:link, a:visited {
 color: #38488f;
 text-decoration: none;
 }
 @media (max-width: 700px) {
 div {
 margin: 0 auto;
 width: auto;
 }
 }
 </style>
</head>

<body>
<div>
 <h1>Example Domain</h1>
 <p>This domain is for use in illustrative examples in

↪ documents. You may use this
 domain in literature without prior coordination or asking for

↪ permission.</p>

3

 <p>More
↪ information...</p>

</div>
</body>
</html>

The content type is Content-Type: text/html; charset=UTF-8 and the
content length is Content-Length: 1256.

In other words, the HTTP response contains 1256 bytes of html (as UTF-
8 characters).

• Use the same approach to get the same file, but make your request of type HEAD
(instead of GET). How does the HTTP response differ?

$ telnet example.com 80
HEAD / HTTP/1.1
host: example.com

The response is:
HTTP/1.1 200 OK
Accept-Ranges: bytes
Age: 205385
Cache-Control: max-age=604800
Content-Type: text/html; charset=UTF-8
Date: Sun, 27 Sep 2020 17:35:10 GMT
Etag: "3147526947"
Expires: Sun, 04 Oct 2020 17:35:10 GMT
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT
Server: ECS (dcb/7EC6)
X-Cache: HIT
Content-Length: 1256

The response differs from the previous one in that it does not include any
message-body (any data), only the HTTP header.

• Send a GET request like the first one, but for resource index.html (instead of /).

$ telnet example.com 80
GET /index.html HTTP/1.1
host: example.com

4

The response is:
HTTP/1.1 200 OK
Accept-Ranges: bytes
Age: 279238
Cache-Control: max-age=604800
Content-Type: text/html; charset=UTF-8
Date: Sun, 27 Sep 2020 17:38:48 GMT
Etag: "3147526947+gzip"
Expires: Sun, 04 Oct 2020 17:38:48 GMT
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT
Server: ECS (dcb/7F83)
Vary: Accept-Encoding
X-Cache: HIT
Content-Length: 1256

<!doctype html>
<html>
<head>
 <title>Example Domain</title>

 <meta charset="utf-8" />
 <meta http-equiv="Content-type" content="text/html; charset=

↪ utf-8" />
 <meta name="viewport" content="width=device-width, initial-

↪ scale=1" />
 <style type="text/css">
 body {
 background-color: #f0f0f2;
 margin: 0;
 padding: 0;
 font-family: -apple-system, system-ui, BlinkMacSystemFont

↪ , "Segoe UI", "Open Sans", "Helvetica Neue", Helvetica,
↪ Arial, sans-serif;

 }
 div {
 width: 600px;
 margin: 5em auto;
 padding: 2em;
 background-color: #fdfdff;
 border-radius: 0.5em;
 box-shadow: 2px 3px 7px 2px rgba(0,0,0,0.02);
 }
 a:link, a:visited {
 color: #38488f;
 text-decoration: none;
 }

5

 @media (max-width: 700px) {
 div {
 margin: 0 auto;
 width: auto;
 }
 }
 </style>
</head>

<body>
<div>
 <h1>Example Domain</h1>
 <p>This domain is for use in illustrative examples in

↪ documents. You may use this
 domain in literature without prior coordination or asking for

↪ permission.</p>
 <p>More

↪ information...</p>
</div>
</body>
</html>

Caching at the web browser

Web browsers cache resources, so that they don’t need to download them again if the
user requests them again. You will now experience the difference this browser behavior
can make.

Use a Firefox web browser, if you can. It comes with a nice tool, the web-developer
network console (≡/Web Developer/Network), which visualizes each HTTP request that
the browser makes, as well as the correspoding HTTP response that the browser receives.
If you click on an HTTP request from the list on the left, you will see all the relevant
information in the panel on the right.

Get ready to capture web traffic:

• Open your web browser and clear the cache. To do so in Firefox:
≡/Preferences/Privacy & Security/Cookies and Site Data/Clear Data...

• In Firefox, open the web-developer network console.
• Open Wireshark and start a new traffic capture.

Answer the following questions, using the web-developer network console, or Wireshark,
or (ideally) both. Using Wireshark is a bit harder this time, but we will guide you:

6

• Visit Welcome to Rio. Where is this resource downloaded from?

From an EPFL web server: From Wireshark, we see that the IP ad-
dress of the web server is 128.178.222.41 (e.g., check the first SSL packet
of type Client Hello). By running host 128.178.222.41 we see that
128.178.222.41 maps to DNS name moodle.epfl.ch.

• How long did it take to download it?

From the network console, we see that it took 129ms.

The web server where this resource is downloaded from uses a secure version of the
HTTP protocol called HTTPs, which is, essentially, HTTP on top of SSL (the Secure
Sockets Layer that we mentioned in class). This makes using Wireshark a bit harder:
HTTP messages are encrypted within SSL packets, so Wireshark cannot simply display
them. You need to:

• Apply the ssl filter to see all the SSL packets sent or received by your computer.

• Identify one of the packets sent by you to the web server or vice versa.

• Click on it, then go to Analyze/Follow/TCP Stream. Ignore/close the window
that pops up. Now you should see only the packets that belong to the same TCP
connection as the packet you chose.

• Look for the last SSL packet carrying encrypted Application Data. This is the
packet that carried the resource from the web server to your computer.

• Look for an SSL packet of type Client Hello. This is the first packet that your
computer sent to the web server to initiate their communication.

• Restart your web browser. Visit Welcome to Rio again. How long did it take to
load it this time? What explains the difference?

This time the image loaded faster. The reason is that the web browser
had cached it, and it did not have to retrieve it again (just to check that
its cached copy was fresh).

• Open a second tab in your web browser and visit Welcome to Rio II. Where is this
resource downloaded from? How long did it take to download it?

7

https://moodle.epfl.ch/pluginfile.php/2834199/mod_resource/content/2/220px-Rio_2_Poster.JPG
https://moodle.epfl.ch/pluginfile.php/2834199/mod_resource/content/2/220px-Rio_2_Poster.JPG
https://upload.wikimedia.org/wikipedia/en/thumb/6/67/Rio_2_Poster.JPG/220px-Rio_2_Poster.JPG

From a web server in the Netherlands: From Wireshark, we see that
the IP address of the web server is 91.198.174.208 (e.g., check the first
SSL packet of type Client Hello). By using an IP geolocation tool
(e.g., https://tools.keycdn.com/geo) we see that the web server with IP
91.198.174.208 is in the Netherlands.

From the network console, we see that it took 22ms.

• When you visited Welcome to Rio II, your web browser had already cached
Welcome to Rio, which is essentially the same image. Do you think your browser
served Welcome to Rio II from the cache, or it downloaded it from its origin web
server? Why do you think your browser behaved this way?

The web browser downloaded the image from its origin web server. Web
browsers identify images (and web objects in general) by URL. Given
that the URLs of the two images are different, the web browser has no
way of knowing that the content of the two images is the same, hence
does not serve the second image from the cache.

Caching at a proxy web server

It is not only web browsers that cache resources; proxy web servers are web servers
that act as intermediaries: they cache resources that are originally stored in other web
servers (called origin web servers) and serve them to nearby web clients.

Before you start, clear your browser cache and find the proxy settings of your web
browser. In Firefox, navigate to about:preferences, then Network Settings/Settings.
Setup a proxy web server using the following settings: HTTPS Proxy: 51.75.147.33,
↪ Port: 3128. (you could use any proxy web server from https://free-proxy-list.net/
that does HTTPS caching).

Visit the same two resources that you visited before.

• Where were the resources downloaded from?

Both resources were downloaded from the proxy web server: From Wire-
shark, we see that the IP address of the web server is 51.75.147.33
(e.g., check the SSL packets of type Client Hello).

8

https://tools.keycdn.com/geo
https://free-proxy-list.net/

• How long did it take to download each resource this time? Why did the download
time change?

From the network console, we see that it took 7335ms and 858ms to
download Welcome to Rio and Welcome to Rio II, respectively. These
times are longer compared to not using the proxy. The reason is the
choice of the proxy: choosing a proxy which is further away and/or more
busy than the origin web server may result in longer delays.

• What will happen to your web browser if the proxy web server that you specified
fails? Will your browser be able to load any web pages? Can you think of a way
to verify your answer?

Regarding new web pages, any attempt to load such a page will fail as
traffic goes through the proxy. Regarding web pages that the browser
has cached, the ability of the browser to load such a page depends on
the freshness of the page (calculated based on several fields of the HTTP
header): if the page is fresh, the browser will load it; if the page is
stale, the browser will not be able to load it as the browser has to check
with the proxy if the page has been modified (and does not receive a
reply from the failed proxy). A good reference about HTTP caching is
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching.

To verify the above, you can start by specifying an invalid IP address as
the proxy web server (e.g., 1.2.3.4).

IMPORTANT: Restore your original proxy settings.

Cookies

Cookies enable a web server to link subsequent HTTP requests to the same web
browser: if you send 10 HTTP GET requests, for 10 different resources, to the same web
server, the web server can use cookies to figure out that these 10 requests came from the
same web browser, even if you did not explicitly provide any identification information
(e.g., you did not login).

Before you start, figure out how to control cookie settings in your browser. In Firefox:

9

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

• To allow or disallow your browser to exchange cookies with web servers:
≡/Preferences/Privacy & Security/Enhanced Tracking Protection/Custom, and
then uncheck or check blocking Cross-site and social media trackers.

• To view or delete the cookies that have been stored on your computer:
≡/Preferences/Privacy & Security/Cookies and Site Data/, and then Manage
↪ Data or Clear Data...

• You can also view the cookies that your computer sends along with an HTTP
request, or receives along with the corresponding response, through the web devel-
oper network console: select an HTTP request from the list of requests on the left,
then select the Cookies menu from the panel on the right.

First, see cookies in action:

• Allow your browser to exchange cookies. Delete existing cookies. Visit MeteoSuisse.
Did the MeteoSuisse web server send you any cookies?

Yes, there is now one cookie for domain www.meteosuisse.admin.ch.

• By default, MeteoSuisse shows you the weather for Geneva. Choose another loca-
tion for which you want to see the weather. Restart your web browser and re-visit
MeteoSuisse. Do you get the weather for Geneva as before? Explain your browser’s
behavior.

No, we get the weather for the last-visited location (e.g., Lausanne). This
happens because, along with the current HTTP request, our web browser
sent the cookie for www.meteosuisse.admin.ch, which contains informa-
tion about our preferred (last-visited) location. This way the server “re-
members” our preferences and offers a personalized website experience.

• Delete existing cookies. Restart your web browser and re-visit MeteoSuisse. Do
you get the weather for Geneva or for your chosen location? Explain your browser’s
behavior.

We get the weather for the default location (Geneva): since we deleted
the cookies, it is as if we visited the website for the first time.

Now think about cookies as state, as information about the user that can be exchanged
between third parties:

10

http://www.meteosuisse.admin.ch/
http://www.meteosuisse.admin.ch/
http://www.meteosuisse.admin.ch/

• Visit Google. Once the resource has finished loading, view the cookies that have
been stored on your computer. How many are they? Notice that each set of cookies
is associated with a “site” or “domain”, e.g., google.ch, or youtube.com. Which
web server sent each of these cookies to your web browser?

Overall, 9 cookies were installed: 2 cookies for domain google.com, 5
cookies for google.ch, 1 cookie for consent.google.ch, and 1 cookie for
youtube.com.

We see that additionally to cookies for the google.ch domain, our com-
puter has installed third-party cookies, e.g., for youtube.com. These
cookies were sent to our web browser upon visiting a web server of the re-
spective domain (a YouTube server in the case of youtube.com) to retrieve
components that are referenced in the page we have originally requested
(www.google.ch).

Note: Your results may differ if Google changes the page.

• Visit YouTube. Did your web browser send along any cookie when it contacted
the YouTube web server? Which one?

Yes, it sent cookies for google.com, google.ch, and youtube.com.

• View again the cookies that have been stored on your computer. How do you think
your web browser decides which cookie(s) to send along with each HTTP request?

Based on the domains it communicates with and the paths or sub-paths
requested from these domains.

Think about your web browser’s communications. Did the Google and YouTube web
servers just exchange information about you without talking to each other directly?

Yes, they communicated through your computer’s local storage.

IMPORTANT: Restore your original cookie settings.

11

http://www.google.ch
http://www.youtube.com

Inside an email server (or: where spam comes from)

Web clients and web servers communicate through the HTTP protocol; email clients
and email servers communicate through another application-layer protocol, called SMTP
(Simple Message Transfer Protocol).

At the beginning of this lab, you used telnet to “talk directly” to a web-server process,
as if you were a web client (web browser); now you will use telnet to “talk directly” to
an email-server process, as if you were an email client. So, instead of manually creating
HTTP requests, you will manually create email messages (not just the subject and body
of the email, but also the headers).

To create email messages, you need to learn some of the language that an SMTP email
server understands. You can find an example of SMTP use on Wikipedia and another
one on the Microsoft Exchange mail server documentation. If you are curious, the SMTP
protocol is specified in RFC 2821 (you don’t need to read the whole thing in order to
finish he lab).

If you are doing the lab on your own computer, and you are not connected to the EPFL
network, make sure you are connected to the EPFL VPN server.

• To connect to an email server process, you need to know the port number that is
associated with email-server processes. Which one is it?

Port 25. HINT: grep smpt /etc/services.

• Use telnet to connect to the email-server process running on mail.epfl.ch. Send
a message from bill.gates@microsoft.com to your own email address.

$ telnet mail.epfl.ch 25
Trying 128.178.222.71...
Connected to mail.epfl.ch.
Escape character is '^]'.
220 mail.epfl.ch AngelmatoPhylax SMTP proxy
helo
250 mail.epfl.ch
mail from: <bill.gates@microsoft.com>
250 ok
rcpt to: <firstname.lastname@epfl.ch>
250 ok
data
354 go ahead
subject: Long time no see

12

https://en.wikipedia.org/w/index.php?title=Simple_Mail_Transfer_Protocol#SMTP_transport_example
https://technet.microsoft.com/en-us/library/aa995718(v=exchg.65).aspx
https://www.ietf.org/rfc/rfc2821.txt

Hi
.
250 message 1380738734.038213.15071 accepted
quit
221 bye bye
Connection closed by foreign host.

• If all went as expected, you should have received your email (check your spam
folder, just in case). Who appears to be the sender of the email? Figure out how
your email client displays email headers and view the headers of this email. Is
there anything in the headers that should make you suspicious about the sender
of the message?

The sender of the message appears to be Bill Gates.

The header of an email message typically contains information about
some of the network interfaces that handled the message. In this partic-
ular case, this includes the network interface of the computer where the
message originated (vpn-124-131.epfl.ch):
Received: from ewa05.intranet.epfl.ch (128.178.224.174) by
 ewa04.intranet.epfl.ch (128.178.224.170) with Microsoft SMTP

↪ Server
 (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256)

↪ id 15.1.2044.4
 via Mailbox Transport; Sun, 27 Sep 2020 21:49:58 +0200
Received: from ewa11.intranet.epfl.ch (128.178.224.186) by
 ewa05.intranet.epfl.ch (128.178.224.174) with Microsoft SMTP

↪ Server
 (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256)

↪ id
 15.1.2044.4; Sun, 27 Sep 2020 21:49:58 +0200
Received: from smtp5.epfl.ch (128.178.224.8) by ewa11.intranet.

↪ epfl.ch
 (128.178.224.186) with Microsoft SMTP Server id 15.1.2044.4 via

↪ Frontend
 Transport; Sun, 27 Sep 2020 21:49:58 +0200
Received: (qmail 11623 invoked by alias); 27 Sep 2020 19:49:58

↪ -0000
Delivered-To: firstname.lastname@epfl.ch
Received: (qmail 11472 invoked by uid 115); 27 Sep 2020 19:49:16

↪ -0000
Received: from vpn-124-131.epfl.ch (HELO

13

X-EPFL-Auth: p7yHmTRUwj4YBg3asdiuOGr8iuOKSDvg7uDHwA0y/kWIVmOR2w=
Message-ID: <angelmatophylax-1601436195.712854.11472@mail.epfl.ch

↪ >
Subject: Long time no see
From: <bill.gates@microsoft.com>
To: Undisclosed recipients:;
Return-Path: bill.gates@microsoft.com
Date: Sun, 27 Sep 2042 21:49:58 +0200
X-MS-Exchange-Organization-Network-Message-Id: 8565e292

↪ -8124-4414-09bd-08d8631e83d2
MIME-Version: 1.0
Content-Type: text/plain
X-MS-Exchange-Organization-AuthSource: ewa11.intranet.epfl.ch
X-MS-Exchange-Organization-AuthAs: Anonymous
X-MS-Exchange-Transport-EndToEndLatency: 00:00:00.1823993
X-MS-Exchange-Processed-By-BccFoldering: 15.01.2044.004

You might suspect that a message that originated in an EPFL computer
is not really coming from Bill Gates.

As someone famous said: "With great power comes great responsibility."

Don’t use your newfound knowledge to spam others, even if it’s just for a joke.

• Last year, some of your colleagues sent around email messages that appeared to
be coming from the EPFL president. As a result, they had their EPFL accounts
suspended (and Katerina had some explaining to do). How do you think the EPFL
sysadmins figured out who sent the fake messages? Couldn’t we do something like
that to stop all spammers?

First, the EPFL sysadmins used the email header of each fake email
message to identify the network interface where the message originated.
Given that all the fake messages had originated in EPFL computers,
which are under the sysadmins’ control, they were able to check the logs
in those computers and see which student had been connected to each
computer at the particular moment and had generated traffic to the EPFL
mail server.

This would be significantly more complicated if the computers where
the fake messages had originated were outside the control of the EPFL
sysadmins. In that case, the EPFL sysadmins would need to contact the
sysadmins of other organizations and receive their help in tracking down

14

the misbehaving users. This takes time and effort, plus there are often
legal challenges in sysadmins of one organization disclosing the identities
of users to sysadmins of another organization. The fact that there is
no globally accepted definition of what consistutes a “spam” message
complicates things even more.

• What does the email server do if you give commands in the wrong order, e.g., “rcpt
to” before “mail from”? What does it do if you give a command that is not part
of the SMTP protocol, e.g. “bonjour” instead of “helo”?

The SMTP server accepts only commands that belong to the SMTP
protocol and are given in the right order:
$ telnet mail.epfl.ch 25
Trying 128.178.222.71...
Connected to mail.epfl.ch.
Escape character is '^]'.
220 mail.epfl.ch AngelmatoPhylax SMTP proxy
helo user
250 mail.epfl.ch
rcpt to: <firstname.lastname@epfl.ch>
503 successful MAIL needed before RCPT
data
503 successful RCPT needed before DATA
quit
221 bye bye
Connection closed by foreign host.

$ telnet mail.epfl.ch 25
Trying 128.178.222.71...
Connected to mail.epfl.ch.
Escape character is '^]'.
220 mail.epfl.ch AngelmatoPhylax SMTP proxy
bonjour
502 unknown command
quit
221 bye bye
Connection closed by foreign host.

• In the old days, an email client could use the VRFY command to verify that
an email address was valid. Ask the EPFL email server to verify katerina.
↪ argyraki@epfl.ch. What does the email server say? Can you guess why?

15

$ telnet mail.epfl.ch 25
Trying 128.178.222.71...
Connected to mail.epfl.ch.
Escape character is '^]'.
220 mail.epfl.ch AngelmatoPhylax SMTP proxy
help
214 see RFC2821
VRFY firstname.lastname@epfl.ch
252 I won't tell you
quit
221 bye bye
Connection closed by foreign host.

VRFY is disabled at mail.epfl.ch. One possible reason is to prevent spam-
mers from checking whether an email address is valid.

Back to layers, headers, encapsulation…

Open this webpage in Firefox and start playing the music (it might play automatically):
https://soundcloud.com/relaxdaily/instrumental-music-to-relax

Open the web-developer network console and find the audio stream (you can filter “Me-
dia” streams from the button bar). Start a Wireshark capture.

• Which application-layer protocol carries the audio messages?

HTTP 1.1: In the network console, click on an HTTP request. This will
open a panel on the right. On this panel, go to the “Headers” tab where
Version HTTP/1.1.

• What is the content type and content size?

From the “Response Headers” we can see that Content-Type: audio/mpeg
and Content-Length: 159661 (bytes) (varies per response).

16

https://soundcloud.com/relaxdaily/instrumental-music-to-relax

• Which transport-layer protocol encapsulates the audio messages?

TCP. We cannot find out from the network console, only from Wireshark.

17

	Inside HTTP
	Caching at the web browser
	Caching at a proxy web server
	Cookies
	Inside an email server (or: where spam comes from)
	Back to layers, headers, encapsulation…

